Semenalidery.com

IT Новости из мира ПК
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Понятие структурного программирования

Структурное программирование

Структурное программирование – это метод, предполагающий создание улучшенных программ. Он служит для организации проектирования и кодирования программ таким образом, чтобы предотвратить большинство логических ошибок и обнаружить те, которые допущены.

Используя язык высокого уровня (такой как Фортран) программисты могли писать программы до несколько тысяч строк длиной. Однако язык программирования, легко понимаемый в коротких программах, когда дело касается больших программ, становится нечитабельным (и неуправляемым). Избавление от таких неструктурированных программ пришло после создания в 1960 году языков структурного программирования. К ним относятся языки Алгол, Паскаль и С.

Структурное программирование подразумевает точно обозначенные управляющие структуры, программные блоки, отсутствие инструкций GOTO, автономные подпрограммы, в которых поддерживается рекурсия и локальные переменные. Главным в структурном программировании является возможность разбиения программы на составляющие ее элементы. Используя структурное программирование, средний программист может создавать и поддерживать программы свыше 50 000 строк длиной.

Структурное программирование тесно связано такими понятиями как «нисходящее проектирование» и «модульное программирование».

Метод нисходящего проектирования предполагает последовательное разложение функции обработки данных на простые функциональные элементы («сверху-вниз»).

В результате строится иерархическая схема, отражающая состав и взаимоподчиненость отдельных функций, которая носит название функциональная структура алгоритма (ФСА) приложения.

Функциональная структура алгоритма приложения разрабатыается в следующей последовательности:

1) определяются цели автоматизации предметной области и их иерархия;

2) устанавливается состав приложений (задач обработки), обеспечивающих реализацию поставленных целей;

3) уточняется характер взаимосвязи приложений и их основные характеристики (информация для решения задач, время и периодичность решения и др.);

4) определяются необходимые для решения задач функции обработки данных;

5) выполняется декомпозиция функций обработки до необходимой структурной сложности, реализуемой предполагаемым инструментарием.

Подобная структура приложения отражает наиболее важное – состав и взаимосвязь функций обработки информации для реализации приложений, хотя и не раскрывает логику выполнения каждой отдельной функции, условия или периодичность их вызовов.

Разложение должно носить строго функциональный характер, т.е. отдельный элемент ФСА должен описывать законченную содержательную функцию обработки информации, которая предполагает определенный способ реализации на программном уровне.

Модульное программирование основано на понятии модуля логически взаимосвязанной совокупности функциональных элементов, оформленных в виде отдельных программных модулей. Модульное программирование рассматривается в разд 7.

Структурное программированиесостоит в получении правильной программы из некоторых простых логических структур. Оно базируется на строго доказанной теореме о структурировании, которая утверждает, что любую правильную программу (с одним входом, одним выходом, без зацикливания и недостижимых команд) можно написать с использованием только следующих основных логических структур:

· циклической (цикл, или повторение).

Эта теорема была сформулирована в 1966 г. Боймом и Якопини (Corrado Bohm, Guiseppe Jacopini). Главная идея теоремы – преобразовать каждую часть программы в одну из трех основных структур или их комбинацию так, чтобы неструктурированная часть программы уменьшилась. После достаточного числа таких преобразований оставшаяся неструктурированной часть либо исчезнет, либо становится ненужной. В теореме доказывается, что в результате получится программа, эквивалентная исходной и использующая лишь упоминавшиеся основные структуры.

Комбинации правильных программ, полученные с использованием этих трех основных структур, также являются правильными программами. Применяя итерацию и вложение основных структур, можно получить программу любого размера и сложности. При использовании только указанных структур отпадает необходимость в безусловных переходах и метках. Поэтому иногда структурное кодирование понимают в узком смысле как программирование без «GOTO».

В алгоритмическом языке С (С++) для реализации структурного кодирования используются следующие операторы:

· объявление (только в С++).

Структура «следование»(рис. 5.1, а) реализуется составным оператором, оператором-выражение, asm-оператором и др.

Составной оператор, или блок, представляет собой список (возможно, пустой) операторов, заключенных в фигурные скобки . Синтаксически блок рассматривается как единый оператор, но он влияет на контекстидентификаторов, объявленных в нем. Блоки могут иметь любую глубину вложенности.

Оператор-выражение представляет собой выражение, за которым следует точка с запятой. Его формат следующий:

Компилятор языка C++ выполняет операторы-выражения, вычисляя выражения. Все побочные эффекты от этого вычисления завершаются до начала выполнения следующего оператора. Большинство операторов-выражений представляют собой операторы присваивания или вызовы функций (например, printf(), scanf() ). Особым случаем является пустой оператор, состоящий из одной точки с запятой (;). Пустой оператор не выполняет никаких действий. Однако он полезен в тех случаях, когда синтаксис C++ ожидает наличия некоторого оператора, но по программе он не требуется (например, бесконечный цикл for ).

Asm-операторы обеспечивают программирование на уровне ассемблера (использование указателей, побитовые операции, операции сдвига и т.д.). Используя ассемблерный язык для обработки подпрограмм критических ситуаций, многократно повторяющихся операций, можно повысить скорость оптимизации без какого-либо усовершенствования языка высокого уровня.

Структура «развилка» (рис. 5.1, б, в) реализуется операторами выбора. Операторы выбора, или операторы управления потоком, выполняют выбор одной из альтернативных ветвей программы, проверяя для этого определенные значения. Существует два типа операторов выбора: if. else и switch.

Базовый оператор if(рис. 5.1, б) имеет следующий формат:


Язык C++ в отличие от, например, языка Паскаль не имеет специального булевого типа данных. В условных проверках роль такого типа может играть целочисленная переменная или указатель на тип. Условное_выражение должно быть записано в круглых скобках. Это выражение вычисляется. Если оно является нулевым (или пустым в случае типа указателя), мы говорим, что условное_выражение ложно(false); в противном случае оно истинно(true).

Если предложение else отсутствует, а условное_выражение дает значение «истина», то выполняется оператор_если_»истина»; в противном случае он игнорируется.

Если задано предложение оператор_если_»ложь», а условное_выражение дает значение «истина», то выполняется оператор_если_»истина»; в противном случае выполняется оператор_если»ложь».

Преобразования указателей выполняются таким образом, что значение указателя всегда может быть корректно сравнено с выражением типа константы, дающим 0. Таким образом, сравнение для пустых указателей может быть сделано в виде:

if (!ptr). или if (ptr = = 0).

Оператор_если_»ложь» и оператор_если_»истина» сами могут являться операторами if, что позволяет организовывать любую глубину вложенности условных проверок. При использовании вложенных конструкций if. else следует быть внимательным и обеспечивать правильный выбор выполняемых операторов. Любая неоднозначность конструкции «else» разрешается сопоставлением else с последним найденным на уровне данного блока if без else.

if (x == 1)

if (y == 1) puts(«x=1 и y=1»);

else puts(«x != 1»);

дает неверное решение, так как else, независимо от стиля записи, сопоставляется не с первым, а со вторым if. Поэтому правильная запись последней строчки должна быть такой:

else puts(«x=1 и y!=1»);

Однако с помощью фигурных скобок можно реализовать и первую конструкцию:

if (x = = 1)

if (y = = 1) puts(«x = и y=1»);

else puts(«x != 1»); // правильное решение

Оператор switch (см. рис. 5.1, в) использует следующий базовый формат:

switch (переключающее_выражение) case_оператор;

Он позволяет передавать управление одному из нескольких операторов с меткой case в зависимости от значения переключающего_выражения. Любой оператор в case_операторе (включая пустой оператор) может быть помечен одной (или более) меткой варианта:

caseконстантное_выражение_i : case_оператор_i;

где каждое константное_выражение_i должно иметь уникальное целочисленное значение (преобразуемое к типу переключающего_выражения) в пределах объемлющего оператора switch.

Допускается иметь в одном операторе switch повторяющиеся константы case.

Оператор может иметь также не более одной метки default:

После вычисления переключающего_выражения выполняется сопоставление результата с одним из константных_выражений_i. Если найдено соответствие, то управление передается case_оператору_i с меткой, для которой найдено соответствие. Если соответствия не найдено и имеется метка default, то управление передается оператору_умолчания. Если соответствие не найдено, а метка default отсутствует, то никакие операторы не выполняются. Для того чтобы остановить выполнение группы операторов для конкретного варианта, следует использовать оператор break.

Основные технологии

Основные понятия, факты

Структурное программирование. Модульное программирование. Объектно-ориентированное программирование. Базовые принципы ООП: инкапсуляция, наследование, полиморфизм.

Навыки и умения

Разработка программ с использованием принципов структурного, модульного, объектно-ориентированного программирования.

Основными технологиями разработки программного обеспечения являются

Сутью структурного программирования является возможность разбиения программы на составляющие элементы.

Идеи структурного программирования появились в начале 70-годов в компании IBM , в их разработке участвовали известные ученые Э. Дейкстра, Х. Милс, Э. Кнут, С. Хоор.

Распространены две методики (стратегии) разработки программ, относящиеся к структурному программированию: программирование «сверху вниз» и программирование «снизу вверх».

Программирование «сверху вниз», или нисходящее программирование – это методика разработки программ, при которой разработка начинается с определения целей решения проблемы, после чего идет последовательная детализация, заканчивающаяся детальной программой. Является противоположной методике программирования «снизу вверх».

Читать еще:  Язык программирования низкого уровня

При нисходящем проектировании задача анализируется с целью определения возможности разбиения ее на ряд подзадач. Затем каждая из полученных подзадач также анализируется для возможного разбиения на подзадачи. Процесс заканчивается, когда подзадачу невозможно или нецелесообразно далее разбивать на подзадачи.

В данном случае программа конструируется иерархически — сверху вниз: от главной программы к подпрограммам самого нижнего уровня, причем на каждом уровне используются только простые последовательности инструкций, циклы и условные разветвления.

Программирование «снизу вверх», или восходящее программирование – это методика разработки программ, начинающаяся с разработки подпрограмм (процедур, функций), в то время когда проработка общей схемы не закончилась. Является противоположной методике программирования «сверху вниз».

Такая методика является менее предпочтительной по сравнению с нисходящим программированием так как часто приводит к нежелательным результатам, переделкам и увеличению времени разработки.

Достоинства структурного программирования :

1) повышается надежность программ (благодаря хорошему структурированию при проектировании, программа легко поддается тестированию и не создает проблем при отладке);

2) повышается эффективность программ (структурирование программы позволяет легко находить и корректировать ошибки, а отдельные подпрограммы можно переделывать (модифицировать) независимо от других);

3) уменьшается время и стоимость программной разработки;

4) улучшается читабельность программ.

Резюме

Технология структурного программирования при разработке серьезных программных комплексов, основана на следующих принципах:

— программирование должно осуществляться сверху вниз;

— весь проект должен быть разбит на модули (подпрограммы) с одним входом и одним выходом;

— подпрограмма должна допускать только три основные структуры – последовательное выполнение, ветвление ( if , case ) и повторение ( for , while , repeat ).

— недопустим оператор передачи управления в любую точку программы ( goto );

— документация должна создаваться одновременно с программированием в виде комментариев к программе.

Структурное программирование эффективно используется для решения различных математических задач, имеющих алгоритмический характер.

Модульное программирование — это организация программы как совокупности небольших независимых блоков (модулей), структура и поведение которых подчиняется определенным заранее правилам.

Модулем (в модульном программировании) называется множество взаимосвязанных подпрограмм (процедур) вместе с данными, которые эти подпрограммы обрабатывают.

Модульное программирование предназначено для разработки больших программ.

Разработкой больших программ занимается коллектив программистов. Каждому программисту поручается разработка некоторой самостоятельной части программы. И он в таком случае отвечает за конструирование всех необходимых процедур и данных для этих процедур. Сокрытие данных (запрет доступа к данным из-за пределов модуля) предотвращает их случайное изменение и соответственно нарушение работы программы. Для взаимодействия отдельных частей (модулей) программы коллективу программистов необходимо продумать только интерфейс (взаимодействие) сконструированных модулей в основной программе.

Напомним понятие и структуру модуля в терминах языка Pascal .

Модуль ( unit ) – программная единица, текст которой компилируется независимо (автономно).

Модуль содержит 4 раздела: заголовок, интерфейсная часть (раздел объявлений), раздел реализации и раздел инициализации.

INTERFACE <интерфейсная часть>

Понятие структурного программирования

«ГЛАВА I. СУТЬ ДЕДУКТИВНОГО МЕТОДА ХОЛМСА.

Шерлок Холмс взял с камина пузырек и вынул

из аккуратного сафьянового несессера…».

От общего к частному

· формулировка целей (результатов) работы программы;

· образное представление процессы ее работы (образная модель);

· выделение из образной модели фрагментов: определение переменных и их смыслового наполнения, стандартных программных контекстов.

Попробуем теперь встроить в общую схему процесса проектирования самое трудное направление «движения» при построении программы – от общего к частному. И тогда получим примерно такую картину.

1. Исходным состоянием процесса проектирования является более или менее точная формулировка цели алгоритма, или результата, который должен быть получен при его выполнении. Формулировка, само собой, производится на естественном языке.

2. Создается образная модель происходящего процесса, используются графические и какие угодно способы представления, образные «картинки», позволяющие лучше понять выполнение алгоритма в динамике;

3. Выполняется сбор фактов, касающихся любых характеристик алгоритма, и попытка их представления средствами языка. Такими фактами является наличие определенных переменных и их «смысл», а также соответствующих им программных контекстов. Понятно, что не все факты удастся сразу выразить в виде фрагментов программы, но они должны быть сформулированы хотя бы на естественном языке;

4. В образной модели выделяется наиболее существенная часть – «главное звено», для которой подбирается наиболее точная словесная формулировка;

5. Производится определение переменных, необходимых для формального представления данного шага алгоритма и формулируется их «смысл»;

6. Выбирается одна из конструкций — простая последовательность действий, условная конструкция или цикл. Составные части выбранной формальной конструкции (например, условие, заголовок цикла) должны быть переписаны в словесной формулировке в виде цели или результата, которые должны давать эти части алгоритма.

7. Для оставшихся неформализованных частей алгоритма (в словесной формулировке) — перечисленная последовательность действий повторяется. Обычно разработка образного представления программы опережает ее «выстраивание», поэтому следующим этапом для неформализованной части алгоритма может быть п.4 (в лучшем случае, при его проработке в образной модели) или п.1-3. В любом случае для вложенных конструкций мы возвращаемся на предыдущие этапы проектирования.

Здесь мы видим много непривычного:

· на любом промежуточном шаге программа состоит из смеси конструкций языка, соответствующих пройденным шагам проектирования, и словесных формулировок, соответствующих еще не раскрытым вложенным конструкциям нижнего уровня;

· процесс заключается в последовательной замене словесных формулировок конструкциями языка. На каждом шаге в программу добавляется всего одна конструкция, а содержимое ее составных частей снова формулируется в терминах «цель» или «результат»;

· «свобода выбора» ограничена тремя управляющими конструкциями языка: последовательностью действий, ветвление или цикл. При этом даже не принципиален конкретный синтаксис оператора, важен лишь вид конструкции, например, что это цикл, а не последовательность действий.

Как и любая технология, структурное проектирование задает лишь «правила игры», но не гарантирует получение результата. Основная проблема – выбор синтаксической конструкции и замена формулировок — все равно технологией формально не решается. И здесь находится камень преткновения начинающих программистов. «Главное звено» — это не столько особенности реализации алгоритма, которые всегда на виду и составляют его специфику, а действие, которое включает в себя все остальные. То есть все равно программист должен «видеть» в образной модели все элементы, отвечающие за поведение программы, и выделять из них главный, в смысле – самый внешний или объемлющий. Единственный совет: постараться извлечь из образной модели как можно больше фактического материала.

И, наконец, на практике

Заповеди структурного программирования

Обычно технология структурного программирования формулируется в виде «заповедей», о содержательной интерпретации которых мы уже догадываемся.

1. нисходящее проектирование ;

2. пошаговое проектирование ;

3. структурное проектирование (программирование без goto );

4. одновременное проектирование алгоритма и данных;

5. модульное проектирование ;

6. модульное, нисходящее, пошаговое тестирование.

Одним словом, структурное программирование — модульное нисходящее пошаговое проектирование и отладка алгоритма и структур данных .

· нисходящее проектирование программы состоит в процессе формализации от самой внешней синтаксической конструкции алгоритма к самой внутренней, в движении от общей формулировки алгоритма к частной формулировке составляющего его действия ;

· структурное проектирование заключается в замене словесной формулировки алгоритма на одну из синтаксических конструкций — последовательность, условие или цикл. При этом синтаксическая вложенность конструкций соответствует последовательности их проектирования и выполнения. Использование оператора перехода goto запрещается из принципиальных соображений ;

· пошаговое проектирование состоит в том, что на каждом этапе проектирования в текст программы вносится только одна конструкция языка, а составляющие ее компоненты остаются в неформальном, словесном описании, что предполагает аналогичные шаги в их проектировании.

Нисходящее пошаговое структурное проектирование алгоритма состоит в движении «от общего к частному» в процессе формулировки действий, выполняемых программой. В записи алгоритма это соответствует движению от внешней (объемлющей) конструкции к внутренней (вложенной). Конкретно в структурном программировании это выражается в том, что любая словесная формулировка действий (алгоритма) может быть заменена на одну из трех формальных конструкций языка программирования:

· простая последовательности действий (блок);

· конструкция выбора (выбора) (условный оператор);

· конструкция повторения (оператор цикла).

Выбранная формальная конструкция представляет собой часть процесса перевода словесного описания алгоритма на формальный язык. Естественно, что эта конструкция не определяет полностью всего содержания алгоритма. Поэтому составными ее частями остаются словесные формулировки более конкретных (вложенных) действий. В результате проектирования получается программа, в которой принципиально отсутствует оператор перехода goto, поэтому структурное программирование иначе называется как программирование без goto .

Читать еще:  Язык визуального программирования скачать

Другое достоинство нисходящего проектирования: при обнаружении «тупика», то есть ошибки в логических рассуждениях можно вернуться на несколько уровней вверх и продолжить процесс проектирования в другом направлении.

Одно из трех

Обратим внимание на некоторые особенности процесса, которые остались за пределами «заповедей» и которые касаются содержательной стороны проектирования.

Последовательность действий, связанных результатом является предпочтительной конструкцией еще и потому, что она обеспечивает синтаксическую независимость (отсутствие вложенности) выполняемых действий. Если в алгоритме выполняется проверка условий (в виде нетривиального действия), а также действия, являющиеся следствием этой проверки, то лучше использовать связующую переменную (например, признак). Например, при проверке и сохранении простого числа лучше использовать признак, а сохранение вынести за пределы цикла проверки.

// Запоминание простого числа в виде

// последовательности действий, связанных признаком

if ( pr ==0) A [ i ++]= v ; // Признак не установлен — запоминание

// Неструктурированный вариант – запись внутри цикла

О том, какая конструкция должна быть выбрана на следующем шаге детализации, можно судить и по внешнему виду формулировки. Другое дело, что эта формулировка должна как можно точнее отражать сущность алгоритма и, что самое главное, «покрывать» его целиком, не оставляя не оговоренных действий:

· когда в формулировке присутствует слово ЕСЛИ, речь идет о условной конструкции (конструкции выбора);

· если в формулировке присутствуют обороты типа «для каждого… выполнить» или «повторять…пока», речь идет о циклической конструкции.

И последнее достоинство: шаги последовательности действий, после того как они определены, могут конкретизироваться в любом порядке, например «по линии наименьшего сопротивления» от простых к более сложным.

Программирование без goto .

if () goto retry;. // Попытаться сделать все сначала

if () goto fatal; > // Выйти сразу же к концу

Все равно при использовании оператора перехода нужно изменить условия текущего выполнения программы применительно к точке перехода, например, переоткрыть файлы, установить начальное (заключительное) значение переменных.

if (A[i]==0) continue; //goto m1;

if (A[i]==-1) return; //goto m2;

m 2: . продолжение тела функции

Хотя такие конструкции нарушают чистоту подхода, все они имеют простые структурированные эквиваленты c с использованием дополнительных переменных – признаков.

int found; // Эквивалент с признаком обнаружения элемента

for (found=0, i=0; i

if (!found) A else B

При отсутствии в массиве элемента с заданным свойством выполняется A, в противном случае — B. Во втором фрагменте используется специальный признак для имитации оператора break.

Try Objective-с

сайта «Try Objective-c — программирование для начинающих»!

Здесь простым и доступным языком представлен материал по основам программирования.

Если вы никогда раньше не программировали, то приступать к изучению абсолютно любого языка программирования следует именно с данных основ программирования — в противном случае понимание многих вещей в дальнейшем будет довольно затруднительно.

Сам процесс обучения программированию довольно трудоемок, но если у вас есть цель — то у вас все получится!

Заучивать весь представленный материал нет необходимости. Главное — чтобы вы понимали саму суть здесь изложенного.

  • Просмотров: 21799
  • Автор: Midav
  • Дата: 5-10-2012, 00:57

1.17 Типы программирования. Часть 1. Структурное программирование. Циклы

Любой язык программирования — это формальный язык, поскольку он придуман людьми для решения каких либо специфических задач. Например, набор специальных знаков и правил записи формул, используемых математиками для записи формул и доказательств теорем, является формальным языком.

Языки программирования – формальные языки, предназначенные для описания алгоритмов.

Формальные языки характерны тем, что имеют четкие синтаксические правила.
Например запись 2×2=4 является синтаксически правильной математической записью, а 2=+4 – нет.

Когда вы читаете предложение на русском языке или выражение на формальном языке, вы определяете его структуру, часто неосознанно. Этот процесс называется синтаксическим анализом или синтаксическим разбором. Эквивалентный англоязычный термин – parsing (парсинг)

Отсюда мы подходим к тому, что называется парадигмой программирования.

Парадигма программирования — это некий набор правил, который определяет стиль написания программ.

Существует несколько таких правил, которые можно распределить по специфике методологии программирования:
— структурное программирование
— объектно-ориентированное программирование
— логическое программирование и прочие.

Следует отметить, что парадигма программирования не определяется однозначно языком программирования; практически все современные языки программирования в той или иной мере допускают использование различных парадигм.

Перевод осуществлён Kovalev Filipp

Это обзорная лекция профессора Джери Кейн с факультета Computer Sciense университета Стэнфорд.
Парадигмы программирования представляют несколько языков, включая C, Ассемблер, C++, Параллельное программирование, Sheme и Python.
Цели данного курса — научить слушателей как писать код на каждом из этих языков и понимать парадигмы программирования, представляемые этими языками.

Полный плейлист по парадигмам программирования на английском языке на ютубе.

Рассмотрим основные моменты касающиеся структурного программирования.

Это методология разработки программного обеспечения, в основе которой лежит представление программы в виде иерархической структуры блоков (модулей).

Любая программа представляет собой структуру, построенную из трёх типов базовых конструкций имеющие следующие отличительные черты:

1
Последовательное исполнение
— однократное выполнение операций в том порядке, в котором они записаны в тексте программы (сначала выполняется инструкция 1, затем инструкция 2, затем следующая. и так далее);

2
Ветвление (if)
— это однократное выполнение одной из двух или более операций, в зависимости от выполнения некоторого заданного условия;
Операторы выполняющие функции ветвления имеют название — условные операторы.

Условие — любое выражение
Оператор — любой допустимый оператор или блок операторов
Если условие истинно — оператор будет выполнен.
Если условие ложно — оператор будет пропущен

Условный оператор if может быть усложнен служебным словом else — иначе
Это слово позволяет получить законченность условного оператора if, которое будет выражаться так:

3
Цикл
— многократное исполнение одной и той же операции до тех пор, пока выполняется некоторое заданное условие (условие продолжения цикла — например производить увеличение числа на единицу, пока оно не станет равным, к примеру, 5).

Цикл for
Для организации цикла for необходимо выполнить три обязательных действия:
— установить начальные значения переменных
— проверять истинность условия цикла
— на каждом шаге изменять значение счетчика чикла

— Выражение 1 — инициализация (выполняется только один раз в самом начале цикла)
— Выражение 2 — условие цикла (выполняется на каждом последующем витке цикла)
— Выражение 3 — приращение счетчика (выполняется на каждом последующем витке цикла после выполнения оператора)

циклы с предусловием (while)
сперва выполняется условие (проверяется его истинность или ложность) и только после этого выполняется сам цикл. Данный цикл может не выполниться ни разу если результатом проверки окажется «ложь».

Условие — любое выражение
Оператор — любой допустимый оператор или блок операторов

циклы с пост условием (do while) — сперва выполняется сам цикл и только после него проверяется его истинность или ложность. Особенностью данного цикла является то, что он будет выполнен хотя бы один раз, в отличии от цикла с предусловием.

В программе циклы могут быть ВЛОЖЕННЫЕ друг в друга произвольным образом.

Повторяющиеся фрагменты программы (либо не повторяющиеся) могут оформляться в виде так называемых ПОДПРОГРАММ (процедур или функций).
В этом случае в тексте основной программы, вместо помещённого в подпрограмму фрагмента, вставляется инструкция вызова подпрограммы. При выполнении такой инструкции выполняется вызванная подпрограмма, после чего исполнение программы продолжается с инструкции, следующей за командой вызова подпрограммы.

Образно говоря — программа состоит из блоков — кирпичиков из которых и строится общая программа.
И чтобы не загромождать кодом одну страницу и повысить читаемость текста, программу делят на отдельные куски — подпрограммы (процедуры или функции), которые отвечают за определенный вид работ.

Процедура, будучи вызванной выполняет какое то действие.
Функция (в отличии от процедуры) всегда возвращает значение.

Например в программе мы можем какой либо переменной присвоить значение (результат) какой то функции:
x = function(y)
Здесь мы переменной Х присваиваем значение Y, которое вернула функция function
(синтаксис мы будем рассматривать позднее)
В языке СИ например, что процедура, что функция называются одинаково — функция. Независимо от того какую работу они выполняют.

Разработка программы в структурном программировании ведётся пошагово, методом «сверху вниз».
Это позволяет вместо работающих подпрограмм использовать «заглушку», чтобы протестировать работоспособность всей программы в целом. После первого тестирования на работоспособность заглушку заменяют реальной подпрограммой.

Читать еще:  Структурное программирование называют

Ярким представителем структурного программирования является язык программирования СИ
Основы программирования на Си мы также будем рассматривать в дальнейшем.

Необходимо стараться писать программу таким образом, чтобы те блоки, из которых она будет состоять были универсальными — чтобы к ним можно было обращаться несколько раз. Или, что еще лучше, чтобы такой модуль был настолько универсален, что его можно было бы использовать в совершенно другой программе.

Основные понятия структурного программирования

Дата добавления: 2015-06-12 ; просмотров: 1751 ; Нарушение авторских прав

На первых ЭВМ с «тесной» памятью и небольшим быстродействием основным показателем качества программы была ее экономичность по занимаемой памяти и времени счета. Чем программа получалась короче, тем класс программиста считался выше. Такое сокращение программы часто давалось большими усилиями. Иногда программа получалась настолько «хитрой», что могла «перехитрить» самого автора. Возвращаясь через некоторое время к собственной программе, желая что-то изменить, программист мог запутаться в ней, забыв свою «гениальную идею».

Так как вероятность выхода из строя сложного технического устройства больше, чем простого, очень сложный алгоритм всегда увеличивает вероятность ошибки в программе.

В процессе изготовления программного продукта программист должен пройти определенные этапы.

На стадии проектирования строится алгоритм будущей программы, например, в виде блок-схемы. Кодирование — это составление текста программы на языке программирования. Отладка осуществляется с помощью тестов, т. е. программа выполняется с некоторым заранее продуманным набором исходных данных, для которого известен результат. Чем сложнее программа, тем большее число тестов требуется для ее проверки. Очень «хитрую» программу трудно протестировать исчерпывающим образом. Всегда есть шанс, что какой-то «подводный камень» остался незамеченным.

С ростом памяти и быстродействия ЭВМ, с совершенствованием языков программирования и трансляторов с этих языков проблема экономичности программы становится менее острой. Все более важной качественной характеристикой программ становится их простота, наглядность, надежность. С появлением машин третьего поколения эти качества стали основными.

В конце 60-х — начале 70-х гг. XX столетия вырабатывается дисциплина, которая получила название структурного программирования. Ее появление и развитие связаны с именами Э. В. Дейкстры, Х.Д.Милса, Д. Е. Кнута и других ученых. Структурное программирование до настоящего времени остается основой технологии программирования. Соблюдение его принципов позволяет программисту быстро научиться писать ясные, безошибочные, надежные программы.

В основе структурного программирования лежит теорема, которая была строго доказана в теории программирования. Суть ее в том, что алгоритм для решения любой логической задачи можно составить только из структур «следование, ветвление, цикл». Их называют базовыми алгоритмическими структурами. Из предыдущих разделов учебника вы уже знакомы с этими структурами. По сути дела, мы и раньше во всех рассматриваемых примерах программ придерживались принципов структурного программирования.

Следование — это линейная последовательность действий:

Каждый блок может содержать в себе как простую команду, так и сложную структуру, но обязательно должен иметь один вход и один выход.

Ветвление — алгоритмическая альтернатива. Управление передается одному из двух блоков в зависимости от истинности или ложности условия. Затем происходит выход на общее продолжение:

Неполная форма ветвления имеет место, когда на ветви «нет» пусто:

Цикл — повторение некоторой группы действий по условию. Различаются два типа цикла. Первый — цикл с предусловием (цикл-пока):

Пока условие истинно, выполняется серия, образующая тело цикла.

Второй тип циклической структуры — цикл с постусловием (цикл-до):

Здесь тело цикла предшествует условию цикла. Тело цикла повторяет свое выполнение, если условие ложно. Повторение кончается, когда условие станет истинным.

Теоретически необходимым и достаточным является лишь первый тип цикла — цикл с предусловием. Любой циклический алгоритм можно построить с его помощью. Это более общий вариант цикла, чем цикл-до. В самом деле, тело цикла-до хотя бы один раз обязательно выполнится, так как проверка условия происходит после завершения его выполнения. А для цикла-пока возможен такой вариант, когда тело цикла не выполнится ни разу. Поэтому в любом языке программирования можно было бы ограничиться только циклом-пока

Однако в ряде случаев применение цикла-до оказывается более удобным, и поэтому он используется.

Иногда в литературе структурное программирование называют программированием без goto. Действительно, при таком подходе нет места безусловному переходу. Неоправданное использование в программах оператора goto лишает ее структурности, а значит, всех связанных с этим положительных свойств: прозрачности и надежности алгоритма. Хотя во всех процедурных языках программирования этот оператор присутствует, однако, придерживаясь структурного подхода, его употребления следует избегать.

Сложный алгоритм состоит из соединенных между собой базовых структур. Соединяться эти структуры могут двумя способами: последовательным и вложенным. Если блок, составляющий тело цикла, сам является циклической структурой, то, значит, имеют место вложенные циклы. В свою очередь, внутренний цикл может иметь внутри себя еще один цикл и т.д. В связи с этим вводится представление о глубине вложенности циклов. Точно так же и ветвления могут быть вложенными друг в друга.

Структурный подход требует соблюдения стандарта в изображении блок-схем алгоритмов. Чертить их нужно так, как это делалось во всех приведенных примерах. Каждая базовая структура должна иметь один вход и один выход. Нестандартно изображенная блок-схема плохо читается, теряется наглядность алгоритма. Вот несколько примеров структурных блок-схем алгоритмов (рис. 47).

Такие блок-схемы легко читаются. Их структура хорошо воспринимается зрительно. Структуре каждого алгоритма можно дать название. У приведенных на рис. 47 блок-схем следующие названия:

1. Вложенные ветвления. Глубина вложенности равна единице.

2. Цикл с вложенным ветвлением.

3. Вложенные циклы-пока. Глубина вложенности — единица.

4. Ветвление с вложенной последовательностью ветвлений на положительной ветви и с вложенным циклом-пока на отрицательной ветви.

5. Следование ветвления и цикла-до.

6. Вложенные циклы. Внешний — цикл-пока, внутренний — цикл-до.

Языки программирования Паскаль и Си называют языками структурного программирования. В них есть все необходимые управляющие конструкции для структурного построения программы. Наглядность такому построению придает структуризация внешнего вида текста программы. Основной используемый для этого прием — сдвиги строк, которые должны подчиняться следующим правилам:

• конструкции одного уровня вложенности записываются на одном вертикальном уровне (начинаются с одной позиции в строке);

• вложенная конструкция записывается смещенной по строке на несколько позиций вправо относительно внешней для нее конструкции.

Для приведенных выше блок-схем структура текста программы на Паскале должна быть следующей:

Структурная методика алгоритмизации — это не только форма описания алгоритма, но это еще и способ мышления программиста. Создавая алгоритм, нужно стремиться составлять его из стандартных структур. Если использовать строительную аналогию, можно сказать, что структурная методика построения алгоритма подобна сборке здания из стандартных секций в отличие от складывания по кирпичику.

Еще одним важнейшим технологическим приемом структурного программирования является декомпозиция решаемой задачи на подзадачи — более простые с точки зрения программирования части исходной задачи. Алгоритмы решения таких подзадач называются вспомогательными алгоритмами. В связи с этим возможны два пути в построении алгоритма:

«сверху вниз»: сначала строится основной алгоритм, затем вспомогательные алгоритмы;

«снизу вверх»: сначала составляются вспомогательные алгоритмы, затем основной.

Первый подход еще называют методом последовательной детализации, второй — сборочным методом.

Сборочный метод предполагает накопление и использование библиотек вспомогательных алгоритмов, реализованных в языках программирования в виде подпрограмм, процедур, функций. При последовательной детализации сначала строится основной алгоритм, а затем в него вносятся обращения к вспомогательным алгоритмам первого уровня. После этого составляются вспомогательные алгоритмы первого уровня, в которых могут присутствовать обращения к вспомогательным алгоритмам второго уровня, и т.д. Вспомогательные алгоритмы самого нижнего уровня состоят только из простых команд.

Метод последовательной детализации применяется в любом конструировании сложных объектов. Это естественная логическая последовательность мышления конструктора: постепенное углубление в детали. В нашем случае речь идет тоже о конструировании, но только не технических устройств, а алгоритмов. Достаточно сложный алгоритм другим способом построить практически невозможно.

Методика последовательной детализации позволяет организовать работу коллектива программистов над сложным проектом. Например, руководитель группы строит основной алгоритм, а разработку вспомогательных алгоритмов и написание соответствующих подпрограмм поручает своим сотрудникам. Участники группы должны лишь договориться об интерфейсе (т. е. взаимосвязи) между разрабатываемыми программными модулями, а внутренняя организация программы — личное дело программиста.

Пример разработки программы методом последовательной детализации будет рассмотрен в следующем разделе.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×