Semenalidery.com

IT Новости из мира ПК
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Модуль в программировании

Модульное программирование

Цели урока:

  • Образовательная: познакомить учащихся с технологией нисходящего и восходящего программирования, ее реализацией с помощью модулей.
  • Развивающая: развивать алгоритмическое мышление, умение анализировать результаты, развивать творческие способности, память, внимательность, развивать информационную культуру.
  • Воспитательная: воспитание аккуратности и точности при составлении алгоритмов; воспитание чувства ответственности, уважения к личности, навыков самообразования.

1. Проверка качества усвоения материала, изученного на предыдущих занятиях.

1.1. Устный опрос:

  • Какой вид имеет структура описания процедуры и функции в Turbo Pascal?
  • В чем состоит отличие описания процедуры и функции?
  • Что такое область действия идентификаторов?
  • Какие параметры называются формальными и какие фактическими?
  • Какие способы передачи параметров реализованы в Turbo Pascal?
  • Почему при работе с графикой в Turbo Pascal необходимо предложение uses Graph?
  • Какие процедуры и функции модуля Graph вам известны?

2. Изложение нового материала.

2.1. Содержание и последовательность излагаемых учебных вопросов.

2.1.1. Технология модульного программирования.

Языки высокого уровня появились в 60-е годы. Ресурсы ЭВМ (объем ОЗУ 8 Кбайт, быстродействие 20 тыс. операций в сек.) были недостаточны, поэтому программисты вынуждены были писать программы весьма “хитроумно” с использованием оператора безусловного перехода. Программа получалась запутанной, имела структуру “блюдо спагетти”. Так как область применения ЭВМ расширялась, программное обеспечение усложнялось. Программисты, решающие сложные задачи, столкнулись с проблемой разрастания количества и размера программ до такой степени, что дальнейший процесс разработки становился практически неуправляемым, и никто из разработчиков не мог с уверенностью сказать, что созданный программный продукт всегда выполняет то, что требуется, и что он не выполняет ничего такого, что не требуется. Поэтому возникла необходимость в новой методологии разработки программных проектов. В 1968–1969 гг. состоялись конференции по программированию. На второй из них Эдсгер Дийкстра предложил принципиально новый способ создания прграмм – структурное программирование. Главное – разбиение программного комплекса (при его создании) на программные модули, которые соединяются иерархически.

Цели модульного программирования:

1. Улучшать читабельность программ.
2. Повышать эффективность и надежность программ (легко находить и корректировать ошибки).
3. Уменьшать время и стоимость программной разработки (уменьшается время отладки).

Разбиение программного комплекса на модули выполняется в соответствии со следующими принципами:

  1. Модуль – это независимый блок, код которого физически и логически отделен от кода других модулей.
  2. Размер модуля не больше 100 операторов.
  3. Имеет одну входную и одну выходную точку.
  4. Модули связаны иерархически.
  5. Разбиение должно обеспечивать надежное скрытие информации в модуле.
    Парнас: “Для написания одного модуля должно быть достаточно минимальных знаний о тексте другого”.
  6. Каждый модуль должен начинаться с комментария (его назначение – входные и выходные переменные).
  7. Не использовать метки и оператор GOTO.
  8. Использовать только стандартные управляющие конструкции (условие, выбор, цикл, блок).

2.1.2. Нисходящее и восходящее программирование.

При разработке модульных программ применяются два метода проектирования – нисходящее и восходящее. При нисходящем проектировании разработка программного комплекса идет сверху вниз.

На первом этапе разработки кодируется, тестируется и отлаживается головной модуль, который отвечает за логику работы всего программного комплекса. Остальные модули заменяются заглушками, имитирующими работу этих модулей. Применение заглушек необходимо для того, чтобы на самом раннем этапе проектирования можно было проверить работоспособность головного модуля. На последних этапах проектирования все заглушки постепенно заменяются рабочими модулями.

При восходящем проектировании разработка идет снизу вверх. На первом этапе разрабатываются модули самого низкого уровня. На следующем этапе к ним подключаются модули более высокого уровня и проверяется их работоспособность. На завершающем этапе проектирования разрабатывается головной модуль, отвечающий за логику работы всего программного комплекса. Методы нисходящего и восходящего программирования имеют свои преимущества и недостатки.

Недостатки нисходящего проектирования:

  • Необходимость заглушек.
  • До самого последнего этапа проектирования неясен размер программного комплекса и его эксплутационные характеристики, за которые, как правило, отвечают модули самого низкого уровня.

Преимущество нисходящего проектирования – на самом начальном этапе проектирования отлаживается головной модуль (логика программы).

Преимущество восходящего программирования – не нужно писать заглушки.

Недостаток восходящего программирования – головной модуль разрабатывается на завершающем этапе проектирования, что порой приводит к необходимости дорабатывать модули более низких уровней.

На практике применяются оба метода. Метод нисходящего проектирования чаще всего применяется при разработке нового программного комплекса, а метод восходящего проектирования – при модификации уже существующего комплекса.

2.1.3. Оформление программы в виде модуля.

При подключении стандартных модулей достаточно корректно записать их идентификаторы в предложении uses. При разработке собственных модулей необходимо помнить некоторые особенности:

  • Не допускается одновременное использование модулей с одинаковыми именами.
  • Идентификатор модуля, указанный в заголовке (unit), должен совпадать с именами файлов, содержащих исходный (.pas) (.tpu, . tpp, .tpw) код.
  • Если идентификатор модуля длиннее восьми символов, то он должен совпадать с именами файлов по первым восьми символам.

Общая структура модуля

unit идентификатор модуля;

<Интерфейсный раздел>

в этом разделе описывается взаимодействие данного модуля с другими пользовательскими и стандартными модулями, а также с главной программой. Другими словами – взаимодействие модуля с “внешним миром”.

Список импорта интерфейсного раздела

в этом списке через запятые перечисляются идентификаторы модулей, информация интерфейсных частей которых должна быть доступна в данном модуле. Здесь целесообразно описывать идентификаторы только тех модулей, информация из которых используется в описаниях раздела interface данного модуля.

Список экспорта интерфейсного раздела

const
type
var
procedure
function

Раздел реализации

в этом разделе указывается реализационная (личная) часть описаний данного модуля, которая недоступна для других модулей и программ. Другими словами – “внутренняя кухня модуля”.

Список импорта раздела реализации

В этом списке через запятые перечисляются идентификаторы модулей, информация интерфейсных частей которых должна быть доступна в данном модуле. Здесь целесообразно описывать идентификаторы всех необходимых модулей, информация из которых не используется в описаниях раздела interface данного модуля и об использовании которых не должен знать ни один другой модуль.

Подразделы внутренних для модуля описаний

В этих подразделах описываются метки, константы, типы, переменные, процедуры и функции, которые описывают алгоритмические действия, выполняемые данным модулем, и которые являются “личной собственностью” только данного модуля. Эти описания недоступны ни одному другому модулю. Заголовки процедур и функций в этом подразделе допускается указывать без списка формальных параметров. Если заголовки указаны все же с параметрами, то список формальных параметров должен быть идентичен такому же списку для соответствующей процедуры (функции) в разделе interface.

label
const
type
var
procedure
function

Раздел инициализации

В этом разделе указываются операторы начальных установок, необходимых для запуска корректной работы модуля. Операторы разделов инициализации модулей, используемых в программе, выполняются при начальном запуске программы в том же порядке, в каком идентификаторы модулей описаны в предложения uses. Если операторы инициализации не требуются, то ключевое слово begin может быть опущено.

Пример модуля a1

unit a1;
interface
uses graph;
procedure init;
procedure pr1;
implementation
procedure init;

procedure pr1;
begin

end;
begin
init;
pr1;
readln;
end.

Головной модуль

program a;
uses a1, a2, a3, a4;
begin
pr1;
pr2;
pr3;
pr4;
readln;
end.

3. Проверка качества усвоения нового материала.

3.1. Устный опрос.

  • Назовите принципы модульного программирования.
  • Когда применяется технология нисходящего программирования? А восходящего?
  • В чем различие между технологией восходящего и технологией нисходящего программирования?
  • Какие существуют особенности при разработке собственных модулей?
  • Из каких разделов состоит модуль?
  • Что описывается в разделе interface?
  • Что описывается в разделе implementation?
  • Что описывается в разделе инициализации?

3.2. Самостоятельная работа учащихся на уроке.

Учащиеся разбиты на две группы. Работой каждой группы руководит “начальник”. Получив задание, учащиеся начинают коллективную работу. Каждый ученик разрабатывает свою программу, оформляет ее в виде модуля UNIT и отдает “начальнику”, который пишет головную программу, объединяя модули своих “подчиненных”.

Литература:

  1. Марченко А. И., Марченко Л. М. “Программирование в среде Turbo Pascal 7.0”, М.: “Бином Универсал”, 1998.
  2. Информатика. № 2. /Приложение к газете “Первое сентября”, 1996.

Теоретический материал. Модульное программирование;

Модульное программирование

Лекция №10

Вопросы для контроля

  1. Перечислите известные Вам методы проектирования программ
  2. Какие методы программирования Вам известны? В чем их суть?
  3. В чем заключается метод декларативного и логического проектирования?
  4. Охарактеризуйте метод логического и метод функционального программирования
  5. Чем отличаются метод структурного проектирования и метод создания проекта?

Обучающая: получить представление о модульном программировании, о понятии «модуль», его характеристиках, видах модулей, о методах разработки, применяемых при модульном программировании;

Ведущий метод обучения: объяснительно-иллюстративный.

Оснащение занятия: конспект лекции, презентации.

Для обеспечения технологичности разрабатываемого программного обеспечения применяется модульное программирование.

1. Понятие модуля

Приступая к разработке программы, следует иметь ввиду, что она, как правило, является большой системой, поэтому необходимо принять меры для ее упрощения. Для этого программу разрабатывают по частям, которые называются программными модулями. Такой метод создания программ называется модульным программированием.

Модульное программирование основано на понятии модуля – программы или функционально завершенного фрагмента программы.

• один вход и один выход. На входе программный модуль получает определенный набор исходных данных, выполняет их обработку и возвращает один набор выходных данных;

• функциональная завершенность. Модуль выполняет набор определенных операций для реализации каждой отдельной функции, достаточных для завершения начатой обработки данных;

• логическая независимость. Результат работы данного фрагмента программы не зависит от работы других модулей;

• слабые информационные связи с другими программными модулями. Обмен информацией между отдельными модулями должен быть минимален;

Таким образом, модули содержат описание исходных данных, операции обработки данных и структуры взаимосвязи с другими модулями.

Программный модуль является самостоятельным программным продуктом. Это означает, что каждый программный модуль разрабатывается, компилируется и отлаживается отдельно от других модулей программы. Более того, каждый разработанный программный модуль может включаться в состав разных программных систем при условии выполнения требований, предъявляемых к его использованию в документации к этому модулю. Таким образом, программный модуль может рассматриваться и как средство упрощения сложных программ, и как средство накопления и многократного использования программистских знаний.

2. Основные характеристики программного модуля

В литературе приводятся различные критерии оценки приемлемости модуля. Были предложены следующие критерии:

• хороший модуль снаружи проще, чем внутри;

• хороший модуль проще использовать, чем построить.

Предлагается использовать следующие характеристики программного модуля для оценки его приемлемости: размер модуля, прочность модуля, сцепление с другими модулями и рутинность модуля.

Размер модуля измеряется числом содержащихся в нем операторов. Модуль не должен быть слишком маленьким или слишком большим. Большие модули, как правило, сложны для понимания и неудобны для внесения изменений, они могут существенно увеличить суммарное время повторных трансляций программы при отладке. Маленькие модули усложняют общую структурную схему программы и могут не окупать накладных расходов, связанных с их оформлением. Обычно рекомендуются программные модули размером от нескольких десятков до нескольких сотен операторов.

Прочность модуля — это мера его внутренних связей. Чем выше прочность модуля, тем больше связей скрыто от внешней по отношению к нему части программы и, следовательно, тем проще сама программа. Самой слабой степенью прочности обладает модуль, прочный по совпадению. В данном случае в программный модуль оформляется повторяющаяся в нескольких местах программы последовательность операторов. Если вдруг возникнет необходимость изменения этой последовательности в одном из контекстов, придется изменять сам модуль, что может сделать его использование в других контекстах ошибочным. Такой класс программных модулей не рекомендуется для использования.

Функционально прочный модуль — это модуль, реализующий одну какую-либо определенную функцию. При этом он может использовать и другие модули. Такой вид прочности модулей рекомендуется для использования.

Высшей степенью прочности обладает информационно прочный модуль — это модуль, выполняющий несколько операций над одной и той же структурой данных, которая неизвестна вне этого модуля. Для каждой из этих операций в таком модуле имеется свой вход со своей формой обращения к нему. Информационно прочный модуль может реализовывать, например абстрактный тип данных.

Сцепление модуля — это мера его зависимости по способу передачи данных от других модулей. Чем слабее сцепление модуля с другими модулями, тем сильнее его независимость от других модулей. Для оценки степени сцепления существует шесть видов сцепления модулей по:

• общей области данных;

Худшим видом сцепления модулей является сцепление по содержимому. Таким является сцепление двух модулей, когда один из них имеет прямые ссылки на содержимое другого модуля (например, на константу, содержащуюся в другом модуле). Такое сцепление модулей недопустимо.

Не рекомендуется использовать также сцепление по общей области — это такое сцепление модулей, когда несколько модулей используют одну и ту же область памяти.

Сцепление по образцу предполагает, что модули обмениваются данными, объединенными в структуры. Этот тип обеспечивает неплохие характеристики по сравнению с предыдущими. Недостаток заключается в том, что конкретные передаваемые данные «спрятаны» в структуры, и потому уменьшается «прозрачность» связи между модулями. Кроме того, при изменении структуры передаваемых данных необходимо модифицировать все использующие ее модули.

При сцеплении по управлению один модуль посылает другому некоторый информационный объект (флаг), предназначенный для управления внутренней логикой модуля. Таким способом часто выполняют настройку режимов работы программного обеспечения. Подобные настройки также снижают наглядность взаимодействия модулей и потому обеспечивают не лучшие характеристики технологичности разрабатываемого программного обеспечения.

Сцепление по внешним ссылкам предполагает, что модули ссылаются на один и тот же глобальный элемент данных.

Единственным видом сцепления модулей, который рекомендуется для использования современной технологией программирования, является сцепление по данным (параметрическое сцепление) — это случай, когда данные передаются модулю либо при обращении к нему как значения его параметров, либо как результат его обращения к другому модулю для вычисления некоторой функции. Такой вид сцепления модулей реализуется на языках программирования при использовании обращений к процедурам (функциям).

Рутинность модуля — это его независимость от предыстории обращений к нему. Модуль будем называть рутинным, если результат обращения к нему зависит только от значений его параметров и не зависит от результатов предыдущих обращений к нему.Модуль будем называть зависящим от предыстории, если результат обращения к нему зависит от внутреннего состояния этого модуля, хранящего следы предыдущих обращений к нему. В книге Майерса не рекомендуется использовать зависящие от предыстории модули, так как они провоцируют появление в программах неуловимых ошибок. Однако во многих случаях именно зависящий от предыстории модуль является наиболее информационно прочным. Поэтому более приемлема следующая рекомендация:

• всегда следует использовать рутинный модуль, если это не приводит к плохим сцеплениям модулей;

• зависящие от предыстории модули следует использовать только в случае, когда это необходимо для обеспечения параметрического сцепления;

• в спецификации зависящего от предыстории модуля должна быть четко сформулирована эта зависимость таким образом, чтобы было возможно прогнозировать поведение данного модуля при разных последующих обращениях к нему.

Связность модулей — мера прочности соединения функциональных и информационных объектов внутри одного модуля. Размещение сильно связанных элементов в одном модуле уменьшает межмодульные связи, в то время как помещение сильно связанных элементов в разные модули не только усиливает межмодульные связи, но и усложняет понимание их взаимодействия. Объединение слабо связанных элементов также уменьшает технологичность модулей, делая их сложнее для понимания.

Различают следующие виды связности (в порядке убывания уровня):

При функциональной связности модуль предназначен для выполнения одной функции. Его исходные данные и операции предназначены для решения одной конкретной задачи. Такой модуль имеет максимальную связность и, как следствие, хорошую технологичность (простота компиляции, тестирования, сопровождения).

При последовательной связности модуля результат обработки данных одной функцией служит исходными данными для другой функции. Такой модуль реализует одну подпрограмму, выполняющую две функции. Модуль с последовательной связностью функций можно разбить на два модуля или более, как с последовательной, так и с функциональной связностью. При этом данные, используемые последовательными функциями, также связаны последовательно. Такой модуль выполняет несколько функций, и, следовательно, его технологичность хуже с точки зрения понимания и тестирования.

Информационно связанными считают функции, обрабатывающие одни и те же данные. Информационно связанный модуль имеет неплохие показатели технологичности, так как все функции, работающие с одними и теми же данными, собраны в один модуль, что позволяет при изменении формата данных корректировать только его. Данные, которые обрабатываются одной функцией, также считают информационно связанными.

Процедурно связаны функции или данные, которые являются частями одного процесса. При процедурной связности отдельные элементы модуля связаны крайне слабо, так как реализуемые ими операции связаны лишь общим процессом, следовательно, технологичность такого модуля хуже, чем у предыдущих.

Временная связность функций подразумевает, что эти функции выполняются параллельно или в течение некоторого периода времени. Временная связность данных означает, что они используются в некотором временном интервале. Отличительной особенностью временной связности является то, что действия, реализуемые такими функциями, обычно могут выполняться в любом порядке. Например, временную связность имеют функции, выполняемые при инициализации некоторого процесса. Большая вероятность модификации функции еще больше уменьшает показатели технологичности модулей данного вида по сравнению с предыдущими, кроме того, содержание модуля с временной связностью функций может изменяться: в него могут включаться новые действия и/или исключаться старые.

Логическая связь строится на основе объединения данных или функций в одну логическую группу, например, логически связаны компоненты модуля, содержащего функции обработки текстовой информации или данные одного и того же типа. При выполнении модуля с логически связанными компонентами все­гда будет вызываться одна какая-либо его часть, при этом вызывающий и вызываемый модули будут связаны по управлению. Показатели технологичности таких модулей ниже предыдущих, так как сложно понять логику их работы.

Модуль, элементы которого имеют случайную связность, имеет самые низкие показатели технологичности, так как его элементы вообще не связаны.

В табл. 2 представлены характеристики различных видов связности по экспертным оценкам

Таблица 2. Сравнительные характеристики различных видов связности

C Урок 19. Модульное программирование. Раздельная компиляция

Теперь мы с вами подошли к такой ситуации, что код наших проектов достиг такой величины, что уже сложно стало его читать, потому что все функции, причём разнообразного назначения, все константы, макросы, глобальные переменные у нас находятся в одном файле main.c. Дальше такое продолжаться не может, и нам нужно теперь будет как-то разбить наш проект на какие то части по их функциональному назначению. Такие части в языке C существуют, они также поддерживаются всеми средами программирования, системами сборки и компиляторами. Они именуются модулями.

Модуль в языке C — это как правило совокупность файла с исходным кодом, как правило имеющим расширение c, и заголовочного файла. Также модуль может быть и с закрытым исходным кодом. Это статическая библиотека. Но о них будет отдельный разговор скорее всего в отдельном занятии.

Заголовочный файл, или как его ещё называют header-файл — это файл, в котором обычно находятся подключения всяческих других заголовочных файлов, библиотек, прототипы функций, некоторые глобальные переменные, структуры, массивы, указатели, макросы и прочие объявления, которые вполне могли бы находиться и в файле с исходным кодом, но, во-первых они его загромождают чрезмерной информационной нагрузкой, а также, благодаря заголовочному файлу, при его подключении в другие файлы становятся доступными многие ресурсы из модуля, частью которого данный файл является. Заголовочные файлы как правило имеют расширение h.

Все модули, находящиеся в проекте возможно скомпилировать и слинковать одной командой, но обычно так не делается. Каждый модуль компилируется отдельно, тем самым для него формируется отдельный объектный файл, обычно имеющий расширение o. Затем все объектные файлы компонуются (линкуются) в один исполняемый файл. В этом и заключается принцип раздельной компиляции.

Процесс раздельной компиляции можно изобразить в виде вот такой диаграммы

Пока мы сегодня будем собирать наш проект также с помощью командного файла, но вскоре перейдём к более серьёзному инструменту — системе сборки — утилите make, с помощью которой полностью будет иметь смысл наша раздельная компиляция. Настоящая раздельная компиляция имеет цель не просто скомпилировать раздельно каждый модуль, но и компилировать только те модули, в которых произошли изменения. Неизменённые модули компилировать незачем, так как таких модулей может быть до тысячи и тогда процесс компиляции будет продолжаться огромное количество времени. Пока же с помощью командного файла у нас будет происходить только мнимая раздельная компиляция. Да у нас и модулей-то будет немного.

Пока мы создаём проект, как и прежде, из проекта прошлого занятия с именем MYPROG18 и присвоим ему имя MYPROG19.

Откроем файл main.c и в функции main(), как обычно, удалим весь код тела кроме возврата нуля, останется от него вот это

int main()

return 0 ; //Return an integer from a function

Функцию menu() тоже удалим.

Модульное программирование

Модуль – это последовательность логически связанных фрагментов, оформленных как отдельная часть программы.

К модулю предъявляются следующие требования:

1) модуль должен реализовывать единственную функцию, т.е. при построении модуля используется концепция: «один модуль – одна функция». Таким образом, модуль – это элемент программы, выполняющий самостоятельную задачу. На его входе он может получать определенный набор исходных данных, обрабатывать их в соответствии с заданным алгоритмом и возвращать результат обработки, т.е. реализуется стандартный принцип IPO (Input – Process – Output) – вход-процесс-выход;

2) на модуль нужно ссылаться с помощью его имени. Он должен иметь один вход и один выход, что гарантирует замкнутость модуля и упрощает сопровождение программ;

3) модуль должен иметь функциональную завершенность, т.е. выполнять перечень регламентированных операций для реализации каждой отдельной функции в полном составе, достаточных для завершения начатой обработки;

4) модуль должен возвращать управление в точку его вызова, в свою очередь, он должен иметь возможность сам вызывать другие модули;

5) модуль не должен сохранять историю своих вызовов и использовать ее при своем функционировании;

6) модуль должен иметь логическую независимость, т.е. результат работы программного модуля зависит только от исходных данных, но не зависит от работы других модулей;

7) модуль должен иметь слабые информационные связи с другими программными модулями – обмен информацией между модулями должен быть по возможности минимизирован;

8) модуль должен быть сравнительно невелик, т.е. быть обозримым по размеру и сложности. Опытные программисты рекомендуют его размер не более двух страниц распечатки на принтере.

Для достижения независимости модулей часто используется принцип информационной локализованности, который состоит в том, что вся информация о структуре данных, о прототипах функций, констант и т.д. сосредотачивается («упрятывается») в отдельном модуле. Доступ к этой информации осуществляется только через этот модуль (в алгоритмическом языке С/С++ такие модули имеют расширение *.h).

Программирование с использованием модулей называется модульным программированием. Оно возникло еще в начале 60-х годов XX в. Модульное программирование основано на идее использования уровней абстракции, когда вся проблема или комплекс задач разбивается на задачи, подзадачи, абстрагируется и представляется в виде иерархического дерева связанных между собой модулей, в совокупности представляющих создаваемое программное обеспечение (ПО).

Достоинствами модульного программирования является следующее:

· большую программу могут писать одновременно несколько программистов, что позволяет раньше закончить задачу;

· можно создавать библиотеки наиболее употребительных модулей;

· упрощается процедура загрузки в оперативную память большой программы, требующей сегментации;

· появляется много естественных контрольных точек для отладки проекта;

· проще проектировать и в дальнейшем модифицировать программы.

Недостатки модульного программирования заключаеются в следующем:

· возрастает размер требуемой оперативной памяти;

· увеличивается время компиляции и загрузки;

· увеличивается время выполнения программы;

· довольно сложными становятся межмодульные интерфейсы.

Модульное программирование реализуется через модули – функции. Функция – это область памяти, выделяемая для сохранения программного кода, предназначенного для выполнения конкретной задачи. Другими словами, функция – минимальный исполняемый модуль программы на языке С/С++. По умолчанию функция имеет тип external, и доступ к ней возможен из любого файла программы. Но она может быть ограничена спецификатором класса памяти static.

Функция характеризуется типом, областью действия связанного с функцией имени, видимостью имени функции, типом связывания.

Все функции имеют рекомендуемый стандартами языка единый формат определения. Он имеет заголовок функции, в котором задаются: тип, имя функции и спецификация формальных параметров:

Тип имя_функции (спецификация_параметров) тело_функции

Тип – это тип возвращаемого функцией значения, в том числе void (кроме типов массива или функции). Умолчанием является тип int. Если тип возврата функции не void, то тело функции должно содержать как минимум один оператор return.

Имя_функции – идентификатор, с помощью которого можно обратиться к функции. Он выбирается программистом произвольно и не должен совпадать со служебными словами и с именами других объектов программы. Однако любая программа на языке С/С++ должна иметь хотя бы одну функцию с именем main – главную функцию, содержащую точку входа в программу.

Спецификация_параметров – список формальных параметров, т.е. переменных, принимающих значения, передаваемые функции при ее вызове. Список формальных параметров перечисляется через запятую. Каждый формальный параметр должен иметь следующий формат:

Тип может быть встроенным (int, long, float, double и т.д.), структурой (struct), объединением (union), перечислением (enum), указателями на них или на функции или классы (class). Имя_формального_параметра представляет собой имя используемой в теле функции переменной. Идентификаторы формальных параметров не могут совпадать с именами локальных переменных, объявленных внутри тела функции.

Объявление формального параметра может содержать инициализатор, то есть выражение, которое должно обеспечить параметру присвоение начального значения. Инициализатор параметра не является константным выражением. Начальная инициализация параметров происходит не на стадии компиляции (как, например, выделение памяти под массивы), а непосредственно в ходе выполнения программы.

В языке С/C++ допустимы функции, количество параметров у которых при компиляции функции не фиксировано, следовательно, остаются неизвестными и их типы. Количество и типы параметров таких функций становятся известными только при их вызове, когда явно задан список фактических параметров. При определении и описании таких функций со списками параметров неопределенной длины спецификацию формальных параметров следует закончить запятой и многоточием.

Каждая функция с переменным количеством параметров должна иметь хотя бы один обязательный параметр. После списка обязательных параметров ставится запятая, а затем многоточие, извещающее компилятор, что дальнейший контроль соответствия количества и типов параметров при обработке вызова функции проводить не нужно.

Спецификация_параметровможет отсутствовать, то есть скобки могут быть пустыми, но в этом случае рекомендуется указывать тип void.

Тело_функции – часть определения функции, ограниченная фигурными скобками и непосредственно размещенная вслед за заголовком функции. Тело_функцииможет быть либо составным оператором, либо блоком. Например:

Модульное программирование

Параметры процедурного типа

Все рассмотренные параметры подпрограмм позволяли выполнять один и тот же алгоритм с различными данными. В Паскале есть и другая возможность — параметризовать алгоритм функциями и процедурами. Это может пригодиться, если требуется выполнить одну и ту же последовательность действий, внутри которой выполняется обращение к разным функциям или процедурам.

Описание параметра подпрограммы в большинстве случаев состоит из имени и типа. Имя функции является константой процедурного ( функционального ) типа, который требуется описать в разделе type , например:

Здесь вводится описание трех типов. Первый из них соответствует любой функции с одним аргументом вещественного типа, возвращающей вещественное значение, второй — процедуре без параметров, а третий — процедуре с тремя параметрами типа word . Как видно из примеров, описание процедурного (функционального) типа соответствует заголовку подпрограммы без имени. Имя типа используется затем в списке параметров подпрограммы аналогично другим типам.

Пример. Программа, вычисляющая определенные интегралы методом прямоугольников для двух функций

на интервале [a, b] с заданным количеством его разбиений ( пример 4.5).

Вычисление определенного интеграла методом прямоугольников состоит в приближенном подсчете площади, ограниченной осью абсцисс, графиком функции и границами интервала. Интервал разбивается на заданное количество промежутков, и площади получившихся фигур заменяются площадями прямоугольников.

Итак, чтобы передать имя функции или процедуры в подпрограмму, необходимо:

  1. Определить соответствующий процедурный тип.
  2. Задать для функций и процедур, предназначенных для передачи в подпрограмму, ключ компилятора <$F +>, определяющий дальнюю адресацию. При этом компилятор формирует полный адрес, состоящий из сегмента и смещения. Альтернативный способ — указать в заголовке каждой функции директиву far :

function Q(x : real) : real; far;

Рекурсивные подпрограммы

Рекурсивной называется подпрограмма, в которой содержится обращение к самой себе. Такая рекурсия называется прямой. Есть также косвенная рекурсия, когда две или более подпрограмм вызывают друг друга.

При обращении подпрограммы к самой себе происходит то же самое, что и при обращении к любой другой функции или процедуре: в стек записывается адрес возврата, резервируется место под локальные переменные, происходит передача параметров, после чего управление передается первому исполняемому оператору подпрограммы. При повторном вызове этот процесс повторяется. Для завершения вычислений каждая рекурсивная подпрограмма должна содержать хотя бы одну нерекурсивную ветвь, заканчивающуюся возвратом в вызывающую программу.

При завершении подпрограммы область ее локальных переменных освобождается, а управление передается на оператор, следующий за рекурсивным вызовом.

Простой пример рекурсивной функции — вычисление факториала (это не означает, что факториал следует вычислять именно так). Чтобы получить факториал числа n, требуется умножить на n факториал ( n – 1)!. Известно также, что 0! = 1 и 1! = 1.

Рекурсивные подпрограммы чаще всего применяют для компактной записи рекурсивных алгоритмов, а также для работы со структурами данных, описанными рекурсивно, например с двоичными деревьями. Любую рекурсивную функцию можно реализовать без применения рекурсии: для этого программист должен сам обеспечить распределение памяти под необходимое количество копий параметров.

Достоинством рекурсии является компактная запись. К недостаткам относятся расход времени и памяти на повторные вызовы функции и передачу ей параметров, а главное, опасность переполнения стека.

Модули

Модуль — это подключаемая к программе библиотека ресурсов. Он может содержать описания типов, констант, переменных и подпрограмм. В модуль обычно объединяют связанные между собой ресурсы: например, в составе оболочки есть модуль Graph для работы с экраном в графическом режиме. Модули применяются как библиотеки, которые могут использоваться различными программами, и для разбиения сложной программы на составные части.

Чтобы использовать модуль , достаточно знать только его интерфейс: детали реализации модуля скрыты от его пользователя. Это позволяет успешно создавать программы большого объема, поскольку мозг человека может хранить одновременно довольно ограниченный объем информации. Кроме того, использование модулей позволяет преодолеть ограничение в один сегмент на объем кода исполняемой программы, поскольку код каждого подключаемого к программе модуля содержится в отдельном сегменте.

Модули можно разделить на стандартные, которые входят в состав системы программирования, и пользовательские, то есть создаваемые программистом. Чтобы подключить модуль к программе, его требуется предварительно скомпилировать. Результат компиляции каждого модуля хранится на диске в отдельном файле с расширением .tpu.

Описание модулей

Исходный текст каждого модуля хранится в отдельном файле с расширением .pas. Модуль состоит из секций (разделов). Общая структура модуля:

Модуль может использовать другие модули, для этого их надо перечислить в операторе uses , который может находиться только непосредственно после ключевых слов interface или implementation . Если модули подключаются к интерфейсной части, все константы и типы данных, описанные в интерфейсной секции этих модулей, могут использоваться в любом описании в интерфейсной части данного модуля. Если модули подключаются к части реализации, все описания из этих модулей могут использоваться только в секции реализации.

В интерфейсной секции модуля определяют константы, типы данных, переменные, а также заголовки процедур и функций. Полностью же подпрограммы описываются в секции реализации, скрытой от пользователя модуля. Это естественно, поскольку для применения подпрограммы требуется знать только информацию, которая содержится в ее заголовке.

В секции реализации описываются подпрограммы, заголовки которых приведены в интерфейсной части. Заголовок подпрограммы должен или быть идентичным указанному в секции интерфейса, или состоять только из ключевого слова procedure или function и имени подпрограммы. Для функции также указывается ее тип.

Кроме того, в этой секции можно определять константы, типы данных, переменные и внутренние подпрограммы. Они используются внешними элементами модуля и видны только в секции реализации.

Секция инициализации предназначена для присваивания начальных значений переменным, используемым в модуле или в программе, к которой он подключен. Операторы, расположенные в секции инициализации модуля, выполняются перед операторами основной программы. Если к программе подключено более одного модуля, их секции инициализации вызываются на выполнение в порядке, указанном в операторе uses .

В оболочках Borland Pascal и Turbo Pascal результат компиляции по умолчанию размещается в оперативной памяти и на диск не записывается. Поэтому для сохранения скомпилированного модуля на диске требуется установить значение пункта Compile ( Destination в значение Disk. Компилятор создаст файл с расширением .tpu, который надо переместить в специальный каталог, путь к которому указан в пункте меню Options ( Directories в поле Unit Directories.

В качестве примера оформим в виде модуля подпрограмму вычисления среднего арифметического значения элементов массива из пример 4.1 ( пример 4.6).

Список параметров подпрограммы в разделе реализации указывать не обязательно.

Читать еще:  Как запустить безопасный режим
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector