Semenalidery.com

IT Новости из мира ПК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Модуль на языке программирования

Пользовательские модули в Паскале

Модули в Паскале по отношению к основной части программы напоминают подпрограммы (процедуры и функции). Но по определению они являются самостоятельными программами, ресурсы которых могут быть задействованы в других программах. Кроме того описание модулей происходит вне вызывающего приложения, а в отдельном файле, поэтому модуль – это отдельно компилируемая программа. Файл скомпилированного модуля (именно такой нужен для использования) будет иметь расширение предусмотренное средой программирования (например, .tpu, .ppu, .pcu).

Модули создаются, как правило, для обеспечения компактности кода, о чем приходиться заботиться крупным проектам. Стоит также отметить, что использование модулей в каком-то смысле снимает ограничение на сегментацию памяти, так как код каждого модуля располагается в отдельном сегменте.

Структура модуля выглядит так:

Далее мы поочередно рассмотрим каждый из данных разделов.

Имя модуля (Unit)

Имя модуля, следующее после ключевого слова Unit, должно совпадать с названием файла (без .pas), в котором находиться его код. Также с помощью имени, модуль подключается к другому модулю, либо к основной программе. Для этого необходимо указать служебное слово Uses, и перечислить через запятую список подключаемых модулей:

Интерфейсная часть (Interface)

В интерфейсной части описываются заголовки объектов, к которым будут иметь доступ другие модули и программы. Это константы, типы, переменные и подпрограммы. Например, так может выглядеть интерфейсная часть модуля Search, содержащего в себе алгоритмы поиска элементов в массиве.

Для объявления данного модуля, в программе нужно указать его имя:

После чего станет возможным использование всех описанных в интерфейсной части объектов.

Исполняемая часть (Implementation)

Начинается этот раздел со слова Implementation (реализация). Именно здесь нужно описать подпрограммы, объявленные в интерфейсной части. При этом в их заголовках разрешается не указывать формальные параметры, иначе они должны полностью совпадать с таковыми в интерфейсной части. Кроме этого, интерфейсная часть может содержать локальные (недоступные вызывающей программе) для модуля объекты.

Инициирующая часть

Инициирующая часть начинает свою работу до начала выполнения основной программы. В ней (между Begin и End), как правило, описываются операторы, предназначенные для разного рода вспомогательной работы. Данная часть может отсутствовать, либо не иметь в себе никакого кода. В первом случае нужно указать End с точкой, во втором – оставить пустое место внутри Begin и End.

Компиляция модулей

Использовать в программе можно лишь скомпилированные модули, имеющие расширение, предусмотренное вашей средой разработки приложений. Рассмотрим три наиболее популярные из них:

Turbo Pascal

Итогом компиляции модуля в Turbo Pascal, будет файл с расширением .tpu (Turbo Pascal Unit), хранящий его код.

Free Pascal

После компиляции модуля в среде Free Pascal, создаются два файла с разными разрешениями: .ppu и .o. Первый содержит интерфейсную часть модуля, а второй (необходим для компоновки программы) – часть реализаций.

Pascal ABC.NET

Pascal ABC.Net во время компиляции модуля не генерирует код на машинном языке. В случае, если компиляция выполнена успешна код сохраняется в файле с разрешением .pcu.

Для сред программирования Turbo Pascal и Free Pascal предусмотрены три режима компиляции: Compile, Make и Build. В режиме Compile все используемые в программе модули должны быть заранее скомпилированы. Приложение в режим Make-компиляции проверяет все подключенные модули на наличие файлов с соответствующим для среды программирования разрешением (.tpu или .o). Если какой-то из них не найден, то происходит поиск файла с названием ненайденного модуля и расширением .pas. Самый надежный из режимов – Build. Поиск и компиляция файлов (с расширением .pas) в данном режиме происходит даже тогда, когда модульные файлы уже имеются.

Пример

Создадим небольшой модуль, содержащий в себе процедуры двоичного и линейного поиска элементов в массиве. Код модуля:

Весь этот код должен находиться в отдельном файле. Теперь напишем основную программу, в которую подключим наш модуль Search.

После компиляции файлов данное приложение должно исправно работать. Конечно, если вы, отвечая на вопрос “Этот массив упорядочен?” укажите программе ложную информацию, то и она может ответить тем же.

Модуль (программирование)

Модуль — функционально законченный фрагмент программы, оформленный в виде отдельного файла с исходным кодом или поименованной непрерывной её части (например, Active Oberon), предназначенный для использования в других программах. Модули позволяют разбивать сложные задачи на более мелкие в соответствии с принципом модульности. Обычно проектируются таким образом, чтобы предоставлять программистам удобную для многократного использования функциональность (интерфейс) в виде набора функций, классов, констант. Модули могут объединяться в пакеты и, далее, в библиотеки. Удобство использования модульной архитектуры заключается в возможности обновления (замены) модуля, без необходимости изменения остальной системы. В большинстве случаев различные модули могут запускаться как на одном сервере, так и на разных, для распределения нагрузки и создания распределенной архитектуры.

История концепции модулей

История концепции модулей, как единиц компиляции, восходит к языкам Фортран II и Кобол, то есть к концу 1950-х годов [1] [2] . В 1976 году появилась публикация, в которой была развита концепция модульности — о языке Mesa (англ.), который был разработан в Xerox PARC. В 1977 году подробно ознакомился с этой концепцией ученый Никлаус Вирт, общаясь с разработчиками в Xerox PARC. [3] Эти идеи были использованы Виртом при создании языка Модула-2, публикация о котором вышла в 1977 году [4] .

Поддерживающие языки

Языки формально поддерживающие концепцию модулей: IBM S/360 Assembler, Кобол, RPG, ПЛ/1, Ада, D, F (англ.) , Фортран, Haskell, Blitz BASIC, OCaml, Паскаль, ML, Модула-2, Оберон, Компонентный Паскаль, Zonnon, Erlang, Perl, Python и Ruby. В IBM System i использовались «модули» от языков RPG, Кобол и CL, когда программировалась в среде ILE.

Модульное программирование может быть осуществлено, даже когда синтаксис языка программирования не поддерживает явное задание имён модулям.

Программные инструменты могут создавать модули исходного кода, представленные как части групп — компонентов библиотек, которые составляются с программой компоновщиком.

Примечания

  1. A brief history of FORTRAN
  2. COBOL Subprograms
  3. Никлаус Вирт. Краткая история Modula и Lilith, перевод с англ. с комментариями в тексте Р. Богатырева
  4. The History of Modula-2 and Oberon

Wikimedia Foundation . 2010 .

Смотреть что такое «Модуль (программирование)» в других словарях:

Модуль — (от лат. modulus «маленькая мера»): В Викисловаре есть статья «модуль» Мо … Википедия

Модуль (значения) — Модуль (от лат. modulus «маленькая мера») составная часть, отделимая или хотя бы мысленно выделяемая из общего. Модульной обычно называют вещь, состоящую из чётко выраженных частей, которые нередко можно убирать или добавлять, не разрушая вещь… … Википедия

Читать еще:  Языки программирования высокого уровня список

Контрактное программирование — (design by contract (DbC), programming by contract, contract based programming) это метод проектирования программного обеспечения. Он предполагает, что проектировщик должен определить формальные, точные и верифицируемые спецификации… … Википедия

Связанность (программирование) — Связанность (англ. coupling) или зависимость (англ. dependency) характеристика взаимосвязи модуля с другими модулями. Это степень, в которой каждый программный модуль полагается на другие модули. Связанность обычно… … Википедия

Функциональное программирование на Питоне — Функциональное программирование является одной из парадигм, поддерживаемых языком программирования Python. Основными предпосылками для полноценного функционального программирования в Python являются: функции высших порядков, развитые средства… … Википедия

Функциональное программирование на Python — Функциональное программирование является одной из парадигм, поддерживаемых языком программирования Python. Основными предпосылками для полноценного функционального программирования в Python являются: функции высших порядков, развитые средства… … Википедия

Объектно-ориентированное программирование на Python — Объектно ориентированное программирование на Python программирование на Python с использованием парадигмы ООП: с самого начала Python проектировался как объектно ориентированный язык программирования[1]. Содержание 1 Введение 1.1 … Википедия

Аспектно-ориентированное программирование — Парадигмы программирования Агентно ориентированная Компонентно ориентированная Конкатенативная Декларативная (контрастирует с Императивной) Ограничениями Функциональная Потоком данных Таблично ориентированная (электронные таблицы) Реактивная … Википедия

Эволюционное программирование — Содержание 1 Эволюционное программирование 2 Современное эволюционное программирование … Википедия

Компонентно-ориентированное программирование — Парадигмы программирования Агентно ориентированная Компонентно ориентированная Конкатенативная Декларативная (контрастирует с Императивной) Ограничениями Функциональная Потоком данных Таблично ориентированная (электронные таблицы) Реактивная … Википедия

Модульное программирование

Параметры процедурного типа

Все рассмотренные параметры подпрограмм позволяли выполнять один и тот же алгоритм с различными данными. В Паскале есть и другая возможность — параметризовать алгоритм функциями и процедурами. Это может пригодиться, если требуется выполнить одну и ту же последовательность действий, внутри которой выполняется обращение к разным функциям или процедурам.

Описание параметра подпрограммы в большинстве случаев состоит из имени и типа. Имя функции является константой процедурного ( функционального ) типа, который требуется описать в разделе type , например:

Здесь вводится описание трех типов. Первый из них соответствует любой функции с одним аргументом вещественного типа, возвращающей вещественное значение, второй — процедуре без параметров, а третий — процедуре с тремя параметрами типа word . Как видно из примеров, описание процедурного (функционального) типа соответствует заголовку подпрограммы без имени. Имя типа используется затем в списке параметров подпрограммы аналогично другим типам.

Пример. Программа, вычисляющая определенные интегралы методом прямоугольников для двух функций

на интервале [a, b] с заданным количеством его разбиений ( пример 4.5).

Вычисление определенного интеграла методом прямоугольников состоит в приближенном подсчете площади, ограниченной осью абсцисс, графиком функции и границами интервала. Интервал разбивается на заданное количество промежутков, и площади получившихся фигур заменяются площадями прямоугольников.

Итак, чтобы передать имя функции или процедуры в подпрограмму, необходимо:

  1. Определить соответствующий процедурный тип.
  2. Задать для функций и процедур, предназначенных для передачи в подпрограмму, ключ компилятора <$F +>, определяющий дальнюю адресацию. При этом компилятор формирует полный адрес, состоящий из сегмента и смещения. Альтернативный способ — указать в заголовке каждой функции директиву far :

function Q(x : real) : real; far;

Рекурсивные подпрограммы

Рекурсивной называется подпрограмма, в которой содержится обращение к самой себе. Такая рекурсия называется прямой. Есть также косвенная рекурсия, когда две или более подпрограмм вызывают друг друга.

При обращении подпрограммы к самой себе происходит то же самое, что и при обращении к любой другой функции или процедуре: в стек записывается адрес возврата, резервируется место под локальные переменные, происходит передача параметров, после чего управление передается первому исполняемому оператору подпрограммы. При повторном вызове этот процесс повторяется. Для завершения вычислений каждая рекурсивная подпрограмма должна содержать хотя бы одну нерекурсивную ветвь, заканчивающуюся возвратом в вызывающую программу.

При завершении подпрограммы область ее локальных переменных освобождается, а управление передается на оператор, следующий за рекурсивным вызовом.

Простой пример рекурсивной функции — вычисление факториала (это не означает, что факториал следует вычислять именно так). Чтобы получить факториал числа n, требуется умножить на n факториал ( n – 1)!. Известно также, что 0! = 1 и 1! = 1.

Рекурсивные подпрограммы чаще всего применяют для компактной записи рекурсивных алгоритмов, а также для работы со структурами данных, описанными рекурсивно, например с двоичными деревьями. Любую рекурсивную функцию можно реализовать без применения рекурсии: для этого программист должен сам обеспечить распределение памяти под необходимое количество копий параметров.

Достоинством рекурсии является компактная запись. К недостаткам относятся расход времени и памяти на повторные вызовы функции и передачу ей параметров, а главное, опасность переполнения стека.

Модули

Модуль — это подключаемая к программе библиотека ресурсов. Он может содержать описания типов, констант, переменных и подпрограмм. В модуль обычно объединяют связанные между собой ресурсы: например, в составе оболочки есть модуль Graph для работы с экраном в графическом режиме. Модули применяются как библиотеки, которые могут использоваться различными программами, и для разбиения сложной программы на составные части.

Чтобы использовать модуль , достаточно знать только его интерфейс: детали реализации модуля скрыты от его пользователя. Это позволяет успешно создавать программы большого объема, поскольку мозг человека может хранить одновременно довольно ограниченный объем информации. Кроме того, использование модулей позволяет преодолеть ограничение в один сегмент на объем кода исполняемой программы, поскольку код каждого подключаемого к программе модуля содержится в отдельном сегменте.

Модули можно разделить на стандартные, которые входят в состав системы программирования, и пользовательские, то есть создаваемые программистом. Чтобы подключить модуль к программе, его требуется предварительно скомпилировать. Результат компиляции каждого модуля хранится на диске в отдельном файле с расширением .tpu.

Описание модулей

Исходный текст каждого модуля хранится в отдельном файле с расширением .pas. Модуль состоит из секций (разделов). Общая структура модуля:

Модуль может использовать другие модули, для этого их надо перечислить в операторе uses , который может находиться только непосредственно после ключевых слов interface или implementation . Если модули подключаются к интерфейсной части, все константы и типы данных, описанные в интерфейсной секции этих модулей, могут использоваться в любом описании в интерфейсной части данного модуля. Если модули подключаются к части реализации, все описания из этих модулей могут использоваться только в секции реализации.

В интерфейсной секции модуля определяют константы, типы данных, переменные, а также заголовки процедур и функций. Полностью же подпрограммы описываются в секции реализации, скрытой от пользователя модуля. Это естественно, поскольку для применения подпрограммы требуется знать только информацию, которая содержится в ее заголовке.

В секции реализации описываются подпрограммы, заголовки которых приведены в интерфейсной части. Заголовок подпрограммы должен или быть идентичным указанному в секции интерфейса, или состоять только из ключевого слова procedure или function и имени подпрограммы. Для функции также указывается ее тип.

Кроме того, в этой секции можно определять константы, типы данных, переменные и внутренние подпрограммы. Они используются внешними элементами модуля и видны только в секции реализации.

Секция инициализации предназначена для присваивания начальных значений переменным, используемым в модуле или в программе, к которой он подключен. Операторы, расположенные в секции инициализации модуля, выполняются перед операторами основной программы. Если к программе подключено более одного модуля, их секции инициализации вызываются на выполнение в порядке, указанном в операторе uses .

В оболочках Borland Pascal и Turbo Pascal результат компиляции по умолчанию размещается в оперативной памяти и на диск не записывается. Поэтому для сохранения скомпилированного модуля на диске требуется установить значение пункта Compile ( Destination в значение Disk. Компилятор создаст файл с расширением .tpu, который надо переместить в специальный каталог, путь к которому указан в пункте меню Options ( Directories в поле Unit Directories.

В качестве примера оформим в виде модуля подпрограмму вычисления среднего арифметического значения элементов массива из пример 4.1 ( пример 4.6).

Список параметров подпрограммы в разделе реализации указывать не обязательно.

Модули в Паскале

Модуль (UNIT -модуль, единица) – автономно (отдельно) компилируемая программная единица, которая содержит компоненты раздела описаний (меток, констант, типов, переменных, процедур, функций), а также может содержать операторы инициализирующей части.
Сам модуль не является выполняемой программой, а предназначен для использования другими программами и модулями.

Структура модуля

Модуль имеет следующую структуру:
UNIT
INTERFACE

IMPLEMENTATION

BEGIN

END.

Заголовок модуля состоит из зарезервированного слова Unit(модуль) и имени модуля.

Имя модуля выбирается по общим правилам и должно совпадать с именем дискового файла содержащего исходный текст модуля.
Расширение в имени модуля (.pas ) не указывается оно задается по умолчанию.

Имя модуля используется для его связи с основной программой с помощью предложения Uses.
Предложение Usesм.б. помещено после заголовка модуля или за словами

Interfaceи Implementation.

Интерфейсная часть – начинается с ключевого слова Interface (интерфейс, сочленение, соединение) и содержит обращение к другим модулям и объявления (описания) глобальных объектов т. е. меток, констант, типов, переменных, и заголовков процедур и функций которые доступны основной программе и другим модулям (т. е. видимые из вне).

Раздел реализации – начинается с ключевого словаImplementation(выполнение) и содержит описание локальных для модуля объектов т. е. меток, констант, типов, переменных которые не доступны основной программе и другим модулям (т. е. не видимые из вне) и полное описание процедур и функций. При этом в заголовке подпрограмм список формальных параметров м.б. опущен, но если он приводится то должен точно соответствовать описанию в интерфейсной части.

Раздел инициализации – заключается в словесные скобки BEGIN END.
и содержит операторы, которые будут выполнены до передачи управления основной программе. Это м.б. операторы инициализации данных (переменных) Например операторы присваивания, ввода а также процедуры связывания и открытия файлов. Раздел операторов м.б. пустымBEGIN END или отсутствовать простоEND.
В конце модуля ставится точка.

Компиляция и использование модулей

Оперативная память система имеет сегментную структуру (один сегмент равен 64К =65535 байт). Код программы м.б. не более одного сегмента, объем данных не может превышать один сегмент (если не использовать динамическую память) и для стека один сегмент. Размер стека задается директивой <$M<>>. Минимальный размер стека 1К максимальный один сегмент по умолчанию 16К. Значения локальных переменных при обращении к подпрограмме помещаются в стек, а при выходе извлекаются из стека.
Код модуля помещается в отдельный сегмент, т.к. он транслируется автономно от основной программы, а количество модулей используемых программой зависит только от доступной ОП. Это позволяет создавать большие программы.
Компилятор создает код модуля с тем же именем, но с расширением tpu(turbo pascal unit).
Для использования модуля основной программой или другими модулями его имя (без расширения) помещается в списке предложенияUses
Если модуль является компактным и часто м.б. использован прикладными программами, то его можно поместить в библиотеку стандартных модулейTURBO.TPL (Turbo-Pasacal-library) с помощью утилитыTPUMOVER.
Но это необходимо делать только в случае крайней необходимости т.к. библиотека загружается в ОП и уменьшает место для программы.
При компиляции файла с исходным текстом модуля появляется одноименный файл с расширением tpu и помещается в каталоге указанном опцией

OPTIONS/DIRECTORIES/UNIT DIRECTORIES

или в текущем каталоге при отсутствии этой опции.
При компиляции основной программы используемые модули д.б. в каталоге указанном опцией
OPTIONS/DIRECTORIES/EXE & TPU DIRECTORIES

либо в текущем каталоге при отсутствии этой опции
Для получения EXE файла задачи в опции

COMPILE/DESTINATION/DISK(MEMORI)
установить DISK.
Существует три режима компиляции модулей:
— COMPILE
— BUILD
— MAKE

Режимы устанавливаются меню COMPILE

1. Режим COMPILE (вызывается Alt-F9) . При этом компилируется программа а используемые модули д.б. предварительно откомпилированы и храниться в соответствующих каталогах.
2. Режим BUILD (вызывается F9) . При этом игнорируются ранее откомпилированные модули, а ищутся модули с расширением pas и перекомпилируются.
3. Режим MAKE (вызываетсяF9) . При этом перекомпилируется только модули, которые имели изменения в тексте.

Пример 16.1.

В файле inp.txt расположены три массива вещественных чисел

-2.1 3.1 -2.4 5.6 5.4 -6.7 3.5 -3.6
2.3 -4.3 2.1 2.5 -3.7 -5.6 4.6 3.5 -7.5
-2.1 4.3 -2.3 7.6 4.5 -8.9 5.7 -4.5 6.8 -5.8

где Max_a, Max_b, Max_c, Sa, Sb, Sc, ka, kb, kc — максимальный элемент, сумма и количество положительных элементов соответствующих массивов a, b, и c.
Результат вывести в файл out.txt и на экран.

Текст модуля

Unit UNMAS;
Interface
Const n=10;
Type vec=array[1..n] of real;
Var z :vec;
i :integer;
f1,f2 :text;
Procedure Vv(s:char; num:byte;Var z:vec);
Procedure SK1(z:vec; num:byte; Var s:real; Var k:byte);
Function MAX(z:vec; num:byte):real;

Implementation
Procedure Vv(s:char; num:byte;Var z:vec);
Begin
Writeln(‘Mассив ‘,s);
For i:=1 to num do
Begin
Read(f1,z[i]); Write(z[i]:4:1,’ ‘:3);
End;
Readln(f1); Writeln;
End;

Procedure SK1(z:vec;num:byte; Var s:real; Var k:byte);
Begin
s:=0; k:=0;
for i:=1 to num do if z[i]>0 then
Begin
s:=s+z[i];
k:=k+1
End;
End;
Function MAX(z:vec;num:byte):real;
Var m :real;
Begin
m:=z[1];
for i:=1 to num do if z[i]>m then m:=z[i];
MAX:=m
End;

Begin
Assign(f1,’inp.txt’); Reset(f1);
Assign(f2,’out.txt’); Rewrite(f2)
End.

Текст программы

Program lr7_16;
Uses CRT,UNMAS;
Var
a,b,c :vec;
y,sa,sb,sc :real;
ka,kb,kc :byte;
Begin
clrscr;
Vv(‘a’,8,a);
Vv(‘b’,9,b);
Vv(‘c’,n,c);
SK1(a,8,sa,ka);
SK1(b,9,sb,kb);
SK1(c,n,sc,kc);
y:=(MAX(a,8)+MAX(b,9)+MAX(c,n))+(sa+sb+sc+ka+kb+kc);
Writeln(‘Результат:’:20);
Write (‘Массив а : ‘);
Writeln(‘sa=’,sa:5:1,’ ka=’,ka);
Write (‘Массив b: ‘);
Writeln(‘sb=’,sb:5:1,’ kb=’,kb);
Write (‘Массив c: ‘);
Writeln(‘sc=’,sc:5:1,’ kc=’,kc);
Writeln(‘ ‘:10,’y=’,y:10);
Readln;
Writeln(f2,’ђҐ§г«мв в:’);
Writeln(f2,’ ‘:10,’y=’,y:10);
Close(f1);
Close(f2)
End.

Результаты работы программы

Mассив a
-2.1 3.1 -2.4 5.6 5.4 -6.7 3.5 -3.6
Mассив b
2.3 -4.3 2.1 2.5 -3.7 -5.6 4.6 3.5 -7.5
Mассив c
-2.1 4.3 -2.3 7.6 4.5 -8.9 5.7 -4.5 6.8 -5.8
Результат:
Массив а : sa= 17.6 ka=4
Массив b: sb= 15.0 kb=5
Массив c: sc= 28.9 kc=5
y= 9.330E+01

Модульное программирование

Модуль – это последовательность логически связанных фрагментов, оформленных как отдельная часть программы.

К модулю предъявляются следующие требования:

1) модуль должен реализовывать единственную функцию, т.е. при построении модуля используется концепция: «один модуль – одна функция». Таким образом, модуль – это элемент программы, выполняющий самостоятельную задачу. На его входе он может получать определенный набор исходных данных, обрабатывать их в соответствии с заданным алгоритмом и возвращать результат обработки, т.е. реализуется стандартный принцип IPO (Input – Process – Output) – вход-процесс-выход;

2) на модуль нужно ссылаться с помощью его имени. Он должен иметь один вход и один выход, что гарантирует замкнутость модуля и упрощает сопровождение программ;

3) модуль должен иметь функциональную завершенность, т.е. выполнять перечень регламентированных операций для реализации каждой отдельной функции в полном составе, достаточных для завершения начатой обработки;

4) модуль должен возвращать управление в точку его вызова, в свою очередь, он должен иметь возможность сам вызывать другие модули;

5) модуль не должен сохранять историю своих вызовов и использовать ее при своем функционировании;

6) модуль должен иметь логическую независимость, т.е. результат работы программного модуля зависит только от исходных данных, но не зависит от работы других модулей;

7) модуль должен иметь слабые информационные связи с другими программными модулями – обмен информацией между модулями должен быть по возможности минимизирован;

8) модуль должен быть сравнительно невелик, т.е. быть обозримым по размеру и сложности. Опытные программисты рекомендуют его размер не более двух страниц распечатки на принтере.

Для достижения независимости модулей часто используется принцип информационной локализованности, который состоит в том, что вся информация о структуре данных, о прототипах функций, констант и т.д. сосредотачивается («упрятывается») в отдельном модуле. Доступ к этой информации осуществляется только через этот модуль (в алгоритмическом языке С/С++ такие модули имеют расширение *.h).

Программирование с использованием модулей называется модульным программированием. Оно возникло еще в начале 60-х годов XX в. Модульное программирование основано на идее использования уровней абстракции, когда вся проблема или комплекс задач разбивается на задачи, подзадачи, абстрагируется и представляется в виде иерархического дерева связанных между собой модулей, в совокупности представляющих создаваемое программное обеспечение (ПО).

Достоинствами модульного программирования является следующее:

· большую программу могут писать одновременно несколько программистов, что позволяет раньше закончить задачу;

· можно создавать библиотеки наиболее употребительных модулей;

· упрощается процедура загрузки в оперативную память большой программы, требующей сегментации;

· появляется много естественных контрольных точек для отладки проекта;

· проще проектировать и в дальнейшем модифицировать программы.

Недостатки модульного программирования заключаеются в следующем:

· возрастает размер требуемой оперативной памяти;

· увеличивается время компиляции и загрузки;

· увеличивается время выполнения программы;

· довольно сложными становятся межмодульные интерфейсы.

Модульное программирование реализуется через модули – функции. Функция – это область памяти, выделяемая для сохранения программного кода, предназначенного для выполнения конкретной задачи. Другими словами, функция – минимальный исполняемый модуль программы на языке С/С++. По умолчанию функция имеет тип external, и доступ к ней возможен из любого файла программы. Но она может быть ограничена спецификатором класса памяти static.

Функция характеризуется типом, областью действия связанного с функцией имени, видимостью имени функции, типом связывания.

Все функции имеют рекомендуемый стандартами языка единый формат определения. Он имеет заголовок функции, в котором задаются: тип, имя функции и спецификация формальных параметров:

Тип имя_функции (спецификация_параметров) тело_функции

Тип – это тип возвращаемого функцией значения, в том числе void (кроме типов массива или функции). Умолчанием является тип int. Если тип возврата функции не void, то тело функции должно содержать как минимум один оператор return.

Имя_функции – идентификатор, с помощью которого можно обратиться к функции. Он выбирается программистом произвольно и не должен совпадать со служебными словами и с именами других объектов программы. Однако любая программа на языке С/С++ должна иметь хотя бы одну функцию с именем main – главную функцию, содержащую точку входа в программу.

Спецификация_параметров – список формальных параметров, т.е. переменных, принимающих значения, передаваемые функции при ее вызове. Список формальных параметров перечисляется через запятую. Каждый формальный параметр должен иметь следующий формат:

Тип может быть встроенным (int, long, float, double и т.д.), структурой (struct), объединением (union), перечислением (enum), указателями на них или на функции или классы (class). Имя_формального_параметра представляет собой имя используемой в теле функции переменной. Идентификаторы формальных параметров не могут совпадать с именами локальных переменных, объявленных внутри тела функции.

Объявление формального параметра может содержать инициализатор, то есть выражение, которое должно обеспечить параметру присвоение начального значения. Инициализатор параметра не является константным выражением. Начальная инициализация параметров происходит не на стадии компиляции (как, например, выделение памяти под массивы), а непосредственно в ходе выполнения программы.

В языке С/C++ допустимы функции, количество параметров у которых при компиляции функции не фиксировано, следовательно, остаются неизвестными и их типы. Количество и типы параметров таких функций становятся известными только при их вызове, когда явно задан список фактических параметров. При определении и описании таких функций со списками параметров неопределенной длины спецификацию формальных параметров следует закончить запятой и многоточием.

Каждая функция с переменным количеством параметров должна иметь хотя бы один обязательный параметр. После списка обязательных параметров ставится запятая, а затем многоточие, извещающее компилятор, что дальнейший контроль соответствия количества и типов параметров при обработке вызова функции проводить не нужно.

Спецификация_параметровможет отсутствовать, то есть скобки могут быть пустыми, но в этом случае рекомендуется указывать тип void.

Тело_функции – часть определения функции, ограниченная фигурными скобками и непосредственно размещенная вслед за заголовком функции. Тело_функцииможет быть либо составным оператором, либо блоком. Например:

Ссылка на основную публикацию
Adblock
detector