Формы записи задач математического программирования - IT Новости из мира ПК
Semenalidery.com

IT Новости из мира ПК
72 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Формы записи задач математического программирования

Лекция 3: Математическое программирование. Линейное программирование. Виды задач линейного программирования. Постановка задач линейного программирования и исследование их структуры. Решение задач линейного программирования симплекс-методом

1. Понятие математического программирования

Математическое программирование – это математическая дисциплина, в которой разрабатываются методы отыскания экстремальных значений целевой функции среди множества ее возможных значений, определяемых ограничениями.

Наличие ограничений делает задачи математического программирования принципиально отличными от классических задач математического анализа по отысканию экстремальных значений функции. Методы математического анализа для поиска экстремума функции в задачах математического программирования оказываются непригодными.

Для решения задач математического программирования разработаны и разрабатываются специальные методы и теории. Так как при решении этих задач приходится выполнять значительный объем вычислений, то при сравнительной оценке методов большое значение придается эффективности и удобству их реализации на ЭВМ.

Математическое программирование можно рассматривать как совокупность самостоятельных разделов, занимающихся изучением и разработкой методов решения определенных классов задач.

В зависимости от свойств целевой функции и функции ограничений все задачи математического программирования делятся на два основных класса:

  • задачи линейного программирования,
  • задачи нелинейного программирования .

Если целевая функция и функции ограничений – линейные функции, то соответствующая задача поиска экстремума является задачей линейного программирования. Если хотя бы одна из указанных функций нелинейна, то соответствующая задача поиска экстремума является задачей нелинейного программирования .

2. Понятие линейного программирования. Виды задач линейного программирования

Линейное программирование (ЛП) – один из первых и наиболее подробно изученных разделов математического программирования . Именно линейное программирование явилось тем разделом, с которого и начала развиваться сама дисциплина » математическое программирование «. Термин «программирование» в названии дисциплины ничего общего с термином «программирование (т.е. составление программы) для ЭВМ» не имеет, т.к. дисциплина » линейное программирование » возникла еще до того времени, когда ЭВМ стали широко применяться для решения математических, инженерных, экономических и др. задач.

Термин » линейное программирование » возник в результате неточного перевода английского » linear programming «. Одно из значений слова «programming» — составление планов, планирование. Следовательно, правильным переводом английского » linear programming » было бы не » линейное программирование «, а «линейное планирование», что более точно отражает содержание дисциплины. Однако, термины линейное программирование , нелинейное программирование, математическое программирование и т.д. в нашей литературе стали общепринятыми и поэтому будут сохранены.

Итак, линейное программирование возникло после второй мировой войны и стало быстро развиваться, привлекая внимание математиков, экономистов и инженеров благодаря возможности широкого практического применения, а также математической стройности.

Можно сказать, что линейное программирование применимо для решения математических моделей тех процессов и систем, в основу которых может быть положена гипотеза линейного представления реального мира.

Линейное программирование применяется при решении экономических задач, в таких задачах как управление и планирование производства; в задачах определения оптимального размещения оборудования на морских судах, в цехах; в задачах определения оптимального плана перевозок груза (транспортная задача); в задачах оптимального распределения кадров и т.д.

Задача линейного программирования (ЛП), как уже ясно из сказанного выше, состоит в нахождении минимума (или максимума) линейной функции при линейных ограничениях.

Общая форма задачи имеет вид: найти при условиях

Наряду с общей формой широко используются также каноническая и стандартная формы. Как в канонической, так и в стандартной форме

Формы записи задачи линейного программирования;

Принцип оптимальности в планировании и управлении, общая задача оптимального программирования

Линейное программирование

Слово “программирование” используется в значении “планирование”, не имеет отношения к компьютерному программированию.

Линейное программирование — это частный раздел опти­мального программирования. В свою очередь оптимальное (математическое) программирование — раздел прикладной математики, изучающий задачи условной оптимизации. В экономике такие задачи возникают при практической реализации принципа оптимальности в планировании и управлении.

Необходимым условием использования оптимального подхода к планированию и управлению (принципа опти­мальности) является гибкость, альтернативность производст­венно-хозяйственных ситуаций, в условиях которых прихо­дится принимать планово-управленческие решения. Именно такие ситуации, как правило, и составляют повседневную практику хозяйствующего субъекта (выбор производствен­ной программы, прикрепление к поставщикам, маршрутиза­ция, раскрой материалов, приготовление смесей и т.д.). Суть принципа оптимальности состоит в стремлении выбрать такое планово-управленческое решение = (х1, х2, . xп), где xj, (j =) — его компоненты, которое наилучшим образом учитывало бы внутренние возможности и внешние условия производственной деятельности хозяйствующего субъекта.

Читать еще:  Запишите выражения на языке программирования

Слова «наилучшим образом» здесь означают выбор неко­торого критерия оптимальности, т.е. некоторого экономиче­ского показателя, позволяющего сравнивать эффективность тех или иных планово-управленческих решений. Традици­онные критерии оптимальности; «максимум прибыли», «ми­нимум затрат», «максимум рентабельности» и др.

Слова «учитывало бы внутренние возможности и внеш­ние условия производственной деятельности» означают, что на выбор планово-управленческого решения (поведения) на­кладывается ряд условий, т.е. выбор осуществляется из некоторой области возможных (допустимых) решений D, эту область называют также областью определения задачи.

Таким образом, реализовать на практике принцип опти­мальности в планировании и управлении — это значит ре­шить экстремальную задачу вида:

где f() — математическая запись критерия оптималь­ности — целевая функция. Задачу условной оптимизации (2.1), (2.2) обычно записывают в виде:

Найти максимум или минимум функции

при ограничениях j1=(х1, х2, . xп)<>b1,

Стандартная форма задачи линейного программирования

Рассмотрим подробнее стандартную и каноническую форму задач линейного программирования. В стандартной форме все ограничения являются неравенствами, а в канонической – равенствами (за исключением ограничений, требующих чтобы все ограничения были неотрицательны), но есть определенные нюансы.

Стандартная форма

В стандартной форме задаются ( n ) действительных чисел (с_1, c_2, ldots, c_n ); ( m ) действительных чисел ( b_1,b_2,ldots ,b_m ); и ( mn ) действительных чисел ( a_ ), где ( i=1,2, ldots, m ) и ( j = 1,2, ldots, n ).
Требуется найти ( n ) действительных чисел ( x_1,x_2,ldots,x_n ) которые:

Максимизируют целевую функцию ( sumlimits_^n c_j x_j ) при заданных ограничениях : ( sumlimits_^n a_ x_j le b_i) при ( i=1,2, ldots, m ) и ограничениях неотрицательности ( x_j ge 0 ) при ( j= 1,2,ldots,n )

Преобразование в стандартную форму

Задача находится не в стандартной форме если:

  1. Целевая функция минимизируется, а не максимизируется
  2. На имеющиеся переменные не наложены условия неотрицательности
  3. Некоторые ограничения имеют форму равенства, т.е. имеют знак равенства вместо меньше или равно
  4. Некоторые ограничения вместо знака “меньше или равно” имеют знак “больше или равно”.

Как получить стандартную форму в таких случаях? Рассмотрим по пунктам:

  1. Достаточно поменять знаки целевой функции, например: ( -5x_1+2x_2 to min ) эквивалентно ( 5x_1-2x_2 to max ).
  2. Если отсутствует ограничение неотрицательности для переменной (x_j), то заменяем эту переменную выражением ( x_j^<‘>-x_j^ <“>) из двух неотрицательных переменных (x_j^<‘>,x_j^ <“>ge 0 ).
  3. Если ограничение имеет вид равенства, то заменяем его парой из двух неравеств “меньше или равно” и “больше или равно”.
  4. Для смены смены выда неравенства с “больше или равно” на “меньше или равно” умножаем обе части неравества на -1 и меняем знак сравнения.

[-5x_1+3x_2 to min ]

Шаг 1. Меняем знак целевой функции

[5x_1-3x_2 to max ]

Шаг 2. Для второй переменной (x_2) ограничений неотрицательности нет. Заменим на выражение (x_2=x_2^<‘>-x_2^ <”>):

Шаг 3. Заменяем равенство на два неравенства:

Шаг 4. Изменяем знак неравества:

Получили задачу в стандартном виде.

Примечание:

В данной заметке рассмотрен основной подход к виду стандартной формы задачи ЛП. Существует и другой подход, например в книге Соколов А. В., Токарев В.В. Методы оптимальных решений. В 2-х т. Т 1. Общие положения. математическое программирование. – 3-е изд. – 564 с. на с. 423 выделяется стандартный вид задачи на максимум:

Однако в общепринят первый вариант из которого второй получается простым умножением обеих частей неравенств на -1.

06. Приемы, позволяющие переходить от одной формы записи условий задач к другой

1 Переход от задачи на минимум к задаче на максимум осуществляется умножением целевой функции на «–1». Действительно, если функция достигает минимума при значениях , то функция Достигает при тех же значениях переменных максимума.

2 Переход от неравенства вида £ к неравенствам вида ³ (и наоборот) также осуществляется умножением исходного неравенства на –1.

3 Переход от неравенства к равенству осуществляется введением дополнительной неотрицательной переменной . К примеру, если первое ограничение имеет вид , то, вводя неотрицательную переменную , получим , если второе ограничение имеет вид , то, вводя неотрицательную переменную , получим

4 При переходе от равенств к неравенствам можно руководствоваться следующим: если дано А=B, то это можно формально записать в виде двух неравенств А £ В, А ³ В;

5 Введение условий неотрицательности переменных. Пусть на переменную это условие не было наложено, тогда вместо этой переменной можно ввести две неотрицательные переменные и и представить , где . Это всегда возможно.

Изложенными приемами общая ЗЛП может быть сведена к симметричной и канонической формам записи ЗЛП и наоборот. Однако, поскольку в процессе таких преобразований мы вводили дополнительные переменные, то после того, как задача решена, нужно произвести обратный переход к исходным переменным, определяющим непосредственный экономический смысл задачи.

Пусть математическая модель задачи имеет следующий вид

;

Для получения общей задачи линейного программирования необходимо, чтобы на все переменные было наложено условие неотрицательности. Для наложения этого ограничения на переменную воспользуемся правилом 5. Введем новые неотрицательные переменные и и представим , где и .

Тогда ОЗЛП будет иметь вид

;

Или (раскрыв скобки):

;

В симметричной (стандартной) форме записи задача будет иметь вид

;

Здесь ограничение (2.6) умножено на –1, а ограничение (2.7) заменено двумя ограничениями:

Откуда, домножив второе ограничение на –1, получим ограничение (2.9) вида ³.

Таким образом, из ограничения (2.7) получены ограничения (2.8) и (2.9).

В канонической форме записи ЗЛП будет иметь вид

;

Экономико-математическую модель задачи, составленную в примере 2, представим в канонической форме записи:

;

Введенные дополнительные переменные и имеют экономический смысл, связанный с содержанием задачи. Здесь , – время простоя оборудования А1 и А2 соответственно.

Общая постановка задачи о принятии решения

Процессы принятия решений лежат в основе любой целенаправленной деятельности. В экономике они предшествуют созданию производственных и хозяйственных организаций, обеспечивают их оптимальное функционирование и взаимодействие”. В научных исследованиях – позволяют выделить важнейшие научные проблемы, найти способы их изучения, предопределяют развитие экспериментальной базы и теоретического аппарата. При создании новой техники – составляют важный этап в проектировании машин, устройств, приборов, комплексов, зданий, в разработке технологии их построения и эксплуатации; в социальной сфере – используются для организации функционирования и развития социальных процессов, их координации с хозяйственными и экономическими процессами. Оптимальные (эффективные) решения позволяют достигать цели при минимальных затратах трудовых, материальных и сырьевых ресурсов.

В классической математике методы поиска оптимальных решений рассматривают в разделах классической математики, связанных с изучением экстремумов функций, в математическом программировании.

Математическое программирование является одним из разделов исследования операций – прикладного направления кибернетики, используемого для решения практических организационных задач. Задачи математического программирования находят применение в различных областях человеческой деятельности, где необходим выбор одного из возможных образов действий (программ действий).

Значительное число задач, возникающих в обществе, связано с управляемыми явлениями, т. е. с явлениями, регулируемыми на основе сознательно принимаемых решений. При том ограниченном объеме информации, который был доступен на ранних этапах развития общества, принималось оптимальное в некотором смысле решение на основании интуиции и опыта, а затем, с возрастанием объема информации об изучаемом явлении, – с помощью ряда прямых расчетов. Так происходило, например, создание календарных планов работы промышленных предприятий.

Совершенно иная картина возникает на современном промышленном предприятии с многосерийным и многономенклатурным производством, когда объем входной информации столь велик, что его обработка с целью принятия определенного решения невозможна без применения современных электронных вычислительных машин. Еще большие трудности возникают в связи с задачей о принятии наилучшего решения.

Под принятием решений в исследовании операций понимают сложный процесс, в котором можно выделить следующие основные этапы:

1-й этап. Построение качественной модели рассматриваемой проблемы, т. е. выделение факторов, которые представляются наиболее важными, и установление закономерностей, которым они подчиняются. Обычно этот этап выходит за пределы математики.

2-й этап. Построение математической модели рассматриваемой проблемы, т. е. запись в математических терминах качественной модели. Таким образом, математическая модель – это записанная в математических символах абстракция реального явления, так конструируемая, чтобы анализ ее давал возможность проникнуть в сущность явления. Математическая модель устанавливает соотношения между совокупностью переменных – параметрами управления явлением. Этот этап включает также построение целевой функции переменных, т. е. такой числовой характеристики, большему (или меньшему) значению которой соответствует лучшая ситуация с точки зрения принимающего решения.

Итак, в результате этих двух этапов формируется соответствующая математическая задача. Причем, второй этап уже требует привлечения математических знаний.

3-й этап. Исследование влияния переменных на значение целевой функции. Этот этап предусматривает владение математическим аппаратом для решения математических, задач, возникающих на втором этапе процесса принятия, решения.

Широкий класс задач управления составляют такие экстремальные задачи, в математических моделях которых условия на переменные задаются равенствами и неравенствами. Теория и методы решения этих задач как раз и составляют содержание математического программирования. На третьем этапе, пользуясь математическим аппаратом, находят решение соответствующих экстремальных задач. Обратим внимание на то, что задачи математического программирования, связанные с решением практических вопросов, как правило, имеют большое число переменных и ограничений. Объем вычислительных работ для нахождения соответствующих решений столь велик, что весь процесс не мыслится без применения современных электронных вычислительных машин (ЭВМ), а значит, требует либо создания программ для ЭВМ, реализующих те или иные алгоритмы, либо использования уже имеющихся стандартных программ.

4-й этап. Сопоставление результатов вычислений, полученных на 3-м этапе, с моделируемым объектом, т. е. экспертная проверка результатов (критерий практики). Таким образом, на этом этапе устанавливается степень адекватности модели и моделируемого объекта в пределах точности исходной информации. Здесь возможны два случая:

1-й случай. Если результаты сопоставления неудовлетворительны (обычная ситуация на начальной стадии процесса моделирования), то переходят ко второму циклу процесса. При этом уточняется входная информация о моделируемом объекте и в случае необходимости уточняется постановка задачи (1-й этап), уточняется или строится заново математическая модель (2-й этап), решается соответствующая математическая задача (3-й этап) и, наконец, снова проводится сопоставление (4-й этап).
2-й случай. Если результаты сопоставления удовлетворительны, то модель принимается. Когда речь идет о неоднократном использовании на практике результатов вычислений, возникает задача подготовки модели к эксплуатации. Предположим, например, что целью моделирования является создание календарных планов производственной деятельности предприятия. Тогда эксплуатация модели включает в себя сбор и обработку информации, ввод обработанной информации в ЭВМ, расчеты на основе разработанных программ календарных планов и, наконец, выдачу результатов вычислений (в удобном для пользователей виде) для их использования в сфере производственной деятельности.

В математическом программировании можно выделить два направления.

К первому, уже вполне сложившемуся направлению – собственно математическому программированию – относятся детерминированные задачи, предполагающие, что вся исходная информация является полностью определенной.

Ко второму направлению – так называемому стохастическому программированию – относятся задачи, в которых исходная информация содержит элементы неопределенности, либо когда некоторые параметры задачи носят случайный характер с известными вероятностными характеристиками. Так, планирование производственной деятельности зачастую производится в условиях неполной информации о реальной ситуации, в которой будет выполняться план. Или, скажем, когда экстремальная задача моделирует работу автоматических устройств, которая сопровождается случайными помехами. Заметим, что одна из главных трудностей стохастического программирования состоит в самой постановке задач, главным образом из-за сложности анализа исходной информации.

Традиционно в математическом программировании выделяют следующие основные разделы.

Линейное программирование – целевая функция линейна, а множество, на котором ищется экстремум целевой функции, задается системой линейных равенств и неравенств. В свою очередь в линейном программировании существуют классы задач, структура которых позволяет создать специальные методы их решения, выгодно отличающиеся от методов решения задач общего характера. Так, в линейном программировании появился раздел транспортных задач.

Нелинейное программирование – целевая функция и ограничения нелинейные. Нелинейное программирование принято подразделять следующим образом:

Выпуклое программирование – целевая функция выпукла (если рассматривается задача ее минимизации) и выпукло множество, на котором решается экстремальная задача.,

Квадратичное программирование – целевая функция квадратичная, а ограничениями являются линейные равенства и неравенства.

Многоэкстремальные задачи. Здесь обычно выделяют специализированные классы задач, часто встречающихся в приложениях, например, задачи о минимизации на выпуклом множестве вогнутых функций.

Важным разделом математического программирования является целочисленное программирование, когда на переменные накладываются условия целочисленности.

Целью математического программирования является создание, где это возможно, аналитических методов определения решения, а при отсутствии таких методов – создание эффективных вычислительных способов получения приближенного решения.

Наконец, заметим, что наименование предмета – “математическое программирование” – связано с тем, что целью решения задач является выбор программы действий. Рассмотрим более подробно задачу линейного программирования.

Ссылка на основную публикацию
Adblock
detector