Semenalidery.com

IT Новости из мира ПК
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Матрица корреляции в excel

Инвестиционный анализ. Расчет корреляционной матрицы в Excel

В данной статье рассматривается практическая задача для любого инвестора – это расчет корреляционной матрицы. Инвесторы, рассчитывая свой портфель активов, акций, облигаций и других финансовых инструментов должны уметь рассчитывать корреляционную матрицу.

Задача любого инвестора – снизить риски вложения, для этого используется различные виды диверсификации (распределения) средств по различным направлениям. Диверсифицированный портфель содержит некоррелированные активы, другими словами, активы которые имеют различную динамику изменения стоимости (цены). Например, если цена одного актива растет, то другого изменяется независимо от первого. Для описания силы связи между активами инвесторы и аналитики используют коэффициент корреляция, который также называет коэффициентом корреляции Пирсона. Он изменяется в диапазоне от -1 до 1.

Если коэффициент корреляции между двумя активами равен 1, то их стоимость изменяется в тандеме (параллельно).
Если коэффициент корреляции равен 0, то цены активов изменяются независимо друг от друга.
Если коэффициент корреляции равен -1, то цены активов сильно зависимы друг от друга и изменяются в противоположных направлениях. Например, если один из активов растет, то другой с таким же темпом обесценивается.

Инвестору приходится анализировать множество различных активов при включении их в свой портфель и ему пригодится корреляционная матрица, которая позволяет сразу сравнить силу взаимосвязи между акциями, облигациями, золотом, недвижимость, фьючерсами, валютой и другими финансовыми инструментами. Формула расчета корреляционной матрицы представлена ниже, где i,j – индексы сравниваемых активов портфеля:

Наиболее распространено использование корреляционной матрицы на фондовом рынке при составлении инвестиционных портфелей Марковица-Тобина и их модификаций, и показывает как диверсифицированы активы портфеля.
Инвесторы советуют, что для минимизации рисков активы портфеля должны быть минимально коррелированны между собой.

Сложности использования коэффициента корреляции в инвестиционном анализе
Финансовые аналитики часто не соглашаются, что корреляция вообще может быть оценена и рассчитана. Выделяют основные недостатки:

  • Корреляционную матрицу и коэффициенты можно рассчитать только тогда когда между активами наблюдаются линейные зависимости, на практике такое встречается крайне редко.
  • При значении коэффициента корреляции равного 0 означает, что отношения и связи отсутствует на исследуемом промежутке времени, но говорит о полном отсутствии связи в будущем между активами нельзя.
  • Коэффициент корреляции неустойчив и изменяется со временем. Например, нефть имеет устойчивую долгосрочную корреляцию с золотом, но в краткосрочном периоде корреляция может сильно изменятся.

Расчет корреляционной матрицы в Excel
Заполняет колонки с изменением стоимости актива. Данные по котировкам можно получить на сайте finam.ru в разделе экспорт котировок. Данные котировки были получены с сайта finance.yahoo.com по иностранным акциям.

Далее необходимо выбрать в главном меню Excel раздел «Данные» и надстройку «Анализ данных» (если она не подключена, то следует ее подключить) – «Корреляция»

Далее необходимо в Excel выбрать входной интервал котировок (зеленая область + названия активов). Отметить галочку метки в первой строке. Выбрать выходной интервал как ячейку и нажать Oк.

Итоговый результат расчета корреляционной матрицы представлен на рисунке ниже. Можно выделить низкий коэффициент корреляции между активами TBILL и всеми остальными (стремится к 0), также между USX и GMC составляет 0.2. Это показывает высокую степень диверсификации данных активов в портфеле. Но активы ATT и GMC имеют достаточно высокую зависимость 0.5, это требует пересмотра данных активов в инвестиционном портфеле.

Определение множественного коэффициента корреляции в MS Excel

Для определения степени зависимости между несколькими показателями применяется множественные коэффициенты корреляции. Их затем сводят в отдельную таблицу, которая имеет название корреляционной матрицы. Наименованиями строк и столбцов такой матрицы являются названия параметров, зависимость которых друг от друга устанавливается. На пересечении строк и столбцов располагаются соответствующие коэффициенты корреляции. Давайте выясним, как можно провести подобный расчет с помощью инструментов Excel.

Вычисление множественного коэффициента корреляции

Принято следующим образом определять уровень взаимосвязи между различными показателями, в зависимости от коэффициента корреляции:

  • 0 – 0,3 – связь отсутствует;
  • 0,3 – 0,5 – связь слабая;
  • 0,5 – 0,7 – средняя связь;
  • 0,7 – 0,9 – высокая;
  • 0,9 – 1 – очень сильная.

Если корреляционный коэффициент отрицательный, то это значит, что связь параметров обратная.

Для того, чтобы составить корреляционную матрицу в Экселе, используется один инструмент, входящий в пакет «Анализ данных». Он так и называется – «Корреляция». Давайте узнаем, как с помощью него можно вычислить показатели множественной корреляции.

Этап 1: активация пакета анализа

Сразу нужно сказать, что по умолчанию пакет «Анализ данных» отключен. Поэтому, прежде чем приступить к процедуре непосредственного вычисления коэффициентов корреляции, нужно его активировать. К сожалению, далеко не каждый пользователь знает, как это делать. Поэтому мы остановимся на данном вопросе.

  1. Переходим во вкладку «Файл». В левом вертикальном меню окна, которое откроется после этого, щелкаем по пункту «Параметры».

После запуска окна параметров посредством его левого вертикального меню переходим в раздел «Надстройки». Там в самом низу правой части окна располагается поле «Управление». Переставляем переключатель в нём в позицию «Надстройки Excel», если отображен другой параметр. После этого клацаем по кнопке «Перейти…», находящейся справа от указанного поля.

  • Происходит запуск небольшого окошка «Надстройки». Устанавливаем флажок около параметра «Пакет анализа». Затем в правой части окна кликаем по кнопке «OK».
  • После указанного действия пакет инструментов «Анализ данных» будет активирован.

    Этап 2: расчет коэффициента

    Теперь можно переходить непосредственно к расчету множественного коэффициента корреляции. Давайте на примере представленной ниже таблицы показателей производительности труда, фондовооруженности и энерговооруженности на различных предприятиях рассчитаем множественный коэффициент корреляции указанных факторов.

      Перемещаемся во вкладку «Данные». Как видим, на ленте появился новый блок инструментов «Анализ». Клацаем по кнопке «Анализ данных», которая располагается в нём.

    Открывается окошко, которое носит наименование «Анализ данных». Выделяем в списке инструментов, расположенных в нём, наименование «Корреляция». После этого щелкаем по кнопке «OK» в правой части интерфейса окна.

    Открывается окно инструмента «Корреляция». В поле «Входной интервал» следует внести адрес диапазона таблицы, в котором расположены данные по трем изучаемым факторам: энерговооруженность, фондовооруженность и производительность. Можно произвести ручное внесение координат, но легче просто установить курсор в поле и, зажав левую кнопку мыши, выделить соответствующую область таблицы. После этого адрес диапазона будет отображен в поле окна «Корреляция».

    Так как у нас факторы разбиты по столбцам, а не по строкам, то в параметре «Группирование» выставляем переключатель в позицию «По столбцам». Впрочем, он там уже и так установлен по умолчанию. Поэтому остается только проверить правильность его расположения.

    Читать еще:  Как выделить ячейку в таблице word

    Около пункта «Метки в первой строке» галочку ставить не обязательно. Поэтому мы пропустим данный параметр, так как он не повлияет на общий характер расчета.

    В блоке настроек «Параметр вывода» следует указать, где именно будет располагаться наша корреляционная матрица, в которую выводится результат расчета. Доступны три варианта:

    • Новая книга (другой файл);
    • Новый лист (при желании в специальном поле можно дать ему наименование);
    • Диапазон на текущем листе.

    Давайте выберем последний вариант. Переставляем переключатель в положение «Выходной интервал». В этом случае в соответствующем поле нужно указать адрес диапазона матрицы или хотя бы её верхнюю левую ячейку. Устанавливаем курсор в поле и клацаем по ячейке на листе, которую планируем сделать верхним левым элементом диапазона вывода данных.

    После выполнения всех указанных манипуляций остается только щелкнуть по кнопке «OK» в правой части окошка «Корреляция».

  • После выполнения последнего действия Excel строит матрицу корреляции, заполняя её данными, в указанном пользователем диапазоне.
  • Этап 3: анализ полученного результата

    Теперь давайте разберемся, как понимать тот результат, который мы получили в процессе обработки данных инструментом «Корреляция» в программе Excel.

    Как видим из таблицы, коэффициент корреляции фондовооруженности (Столбец 2) и энерговооруженности (Столбец 1) составляет 0,92, что соответствует очень сильной взаимосвязи. Между производительностью труда (Столбец 3) и энерговооруженностью (Столбец 1) данный показатель равен 0,72, что является высокой степенью зависимости. Коэффициент корреляции между производительностью труда (Столбец 3) и фондовооруженностью (Столбец 2) равен 0,88, что тоже соответствует высокой степени зависимости. Таким образом, можно сказать, что зависимость между всеми изучаемыми факторами прослеживается довольно сильная.

    Как видим, пакет «Анализ данных» в Экселе представляет собой очень удобный и довольно легкий в обращении инструмент для определения множественного коэффициента корреляции. С его же помощью можно производить расчет и обычной корреляции между двумя факторами.

    Отблагодарите автора, поделитесь статьей в социальных сетях.

    Матрица корреляции в excel

    п.13 . Решение прикладных задач средствами EXCEL .

    Коэффициент линейной корреляции Браве-Пирсона ( ) — параметр, характеризующий степень линейной взаимосвязи между двумя выборками. Он изменяется от (-1) (полная обратная линейная зависимость) до 1 (полная прямая пропорциональная зависимость). Коэффициент корреляции является безразмерной величиной и его значение не зависит от единиц измерения случайных величин X и У.

    В MS Excel для вычисления парных коэффициентов линейной корреляции используется специальная функция КОРРЕЛ. Параметрами функции являются КОРРЕЛ (массив 1, массив 2), где:

    массив 1 — это диапазон ячеек первой случайной величины;

    массив 2 — это второй интервал ячеек со значениями второй случайной величины.

    При большом числе наблюдений, когда коэффициенты корреляции необходимо последовательно вычислять из нескольких рядов числовых данных, для удобства получаемые коэффициенты сводят в таблицы, называемые корреляционными матрицами.

    Корреляционная матрица — это квадратная (или прямоугольная) таблица, в которой на пересечении соответствующих строки и столбца находится коэффициент корреляции между соответствующими параметрами.

    В MS Excel для вычисления корреляционных матриц используется процедура Корреляция. Процедура позволяет получить корреляционную матрицу, содержащую коэффициенты корреляции между различными параметрами.

    Для реализации процедуры необходимо:

    •выполнить команду Сервис ►Анализ данных;

    •в появившемся списке Инструменты анализа выбрать строку Корреляция и нажать кнопку 0К;

    •в появившемся диалоговом окне указать Входной интервал, то есть ввести ссыл­ку на ячейки, содержащие анализируемые данные. Для этого следует навести указатель мыши на левую верхнюю ячейку данных, нажать левую кнопку мыши и, не отпуская ее, протянуть указатель мыши к правой нижней ячейке, содержащей анализируемые данные, затем отпустить левую кнопку мыши. Входной интервал должен содержать не менее двух столбцов.

    •в разделе Группировка переключатель установить в соответствии с введенными данными;

    •указать выходной диапазон, то есть ввести ссылку на ячейки, в которые будут выведены результаты анализа. Для этого следует поставить флажок в левое поле Выходной интервал (навести указатель мыши и щелкнуть левой кнопкой), далее навести указатель мыши на правое поле ввода Выходной интервал и щелкнуть левой кнопкой мыши, затем указатель мыши навести на левую верхнюю ячейку выходного диапазона и щелкнуть левой кнопкой мыши. Размер выходного диапазона будет определен автоматически, и на экран будет выведено сообщение в случае возможного наложения выходного диапазона на исходные данные.

    •нажать кнопку ОК.

    Результаты анализа. В выходной диапазон будет выведена корреляционная матрица, в которой на пересечении каждых строки и столбца находится коэффициент корреляции между соответствующими параметрами. Ячейки выходного диапазона, имеющие совпадающие координаты строк и столбцов, содержат значение 1, так как каждый столбец во входном диапазоне полностью коррелирует с самим собой.

    Интерпретация результатов. Рассматривается отдельно каждый коэффициент корреляции между соответствующими параметрами. Его числовое значение оценивается по эмпирическим правилам, изложенным в соответствующей лекции.

    Ниже показаны две возможности вычисления коэффициента линейной корреляции Браве-Пирсона: на основе привлечения возможностей Мастера функций и на основе использования Пакета анализа.

    Приведен пример исходных данных измерения двух показателей интеллекта (вербального (Х i ) и невербального (У i )) у 20 учащихся 8 класса. Рассчитать коэффициент корреляции.

    Вербальный (Х i ): 13, 9, 8, 9, 7, 9, 8, 13, 11, 12, 8, 9, 10, 10, 12, 10, 8, 9, 10, 11.

    Невербальный ( Yi ): 12, 11, 8, 12, 9, 11, 9, 13, 9, 10, 9, 8, 10, 12, 10, 10, 11, 10, 11, 13.

    Для расчета коэффициента корреляции, прежде всего, необходимо ввести данные в рабочую таблицу. Откройте новую рабочую таблицу. Введите в ячейку А1 – Вербальный (Х i ) . Затем в ячейки А2-А21 — соответствующие значения. В ячейки B 1- B 21 введите название Невербальный ( Yi ) и значения. Затем вычисляется значение коэффициента корреляции между выборками. Для этого табличный курсор установите в свободную ячейку (А22). На панели инструментов нажмите кнопку Вставка функции ( fx ). В появившемся диалоговом окне Мастер функций выберите категорию Статистические и функцию КОРРЕЛ, после чего нажмите кнопку ОК. Появившееся диалоговое окно КОРРЕЛ за серое поле мышью отодвиньте вправо на 1-2 см от данных (при нажатой левой клавише). Указателем мыши введите диапазон данных Х1 в поле Массив 1 (А2-А21). В поле Массив 2 введите диапазон данных У1 (В2-В21). Нажмите кнопку ОК. В ячейке А22 появится значение коэффициента корреляции — 0,517392.

    Читать еще:  Печать нескольких документов word

    Результаты анализа. В результате будет получена таблица, показанная на рисунке.

    Множественный коэффициент корреляции в Excel (Эксель)

    Коэффициент корреляции используется в том случае, когда нужно определить значение зависимости между значениями. Позже эти данные задают в одной таблице которая определяется как матрица корреляции. С помощью программы Microsoft Excel можно сделать расчёт корреляции.

    Коэффициент корреляции определяется некоторыми данными. Если уровень показателя составляет от 0 до 0.3, то в таком случае связи нет. Если показатель составляет от 0.3 до 0.5 — это слабая связь. Если показатель доходит до 0.7, то связь средняя. Высокой можно назвать когда показатель достигает отметки 0.7-0.9. Если показатель составляет 1 — это наиболее сильная связь.

    Первым делом нужно подключить пакет анализа данных. Без его активации дальнейшие действия нельзя провести. Подключить его можно открыв раздел «Главная» и в меню выбрать «Параметры».

    Далее откроется новое окно. В нём нужно выбрать «Надстройки» и в поле управления параметрами выбрать среди элементов списка «Надстройки Excel»
    После запуска окна параметров посредством его левого вертикального меню переходим в раздел «Надстройки». После этого нажимаем «Перейти».

    Далее откроется новое окно надстроек. Находим в списке «Пакет анализа» и ставим галочку. После этого подтверждаем действие. И пакет анализа данных будет подключён для документа Excel.

    После этих действий можно начать работу. Создана таблица с данными и на её примере сделаем нахождение множественного коэффициента корреляции.
    Для начала откроем раздел «Данные» и среди инструментария выбираем «Анализ данных».

    Откроется специальное окно с инструментами для анализа. Выбираем «Корреляция» и подтверждаем действие.

    Перед пользователем появится новое окно с параметрами. Как входной интервал задается диапазон значений в таблице. Задать можно как в ручную так и выделив данные, которые будут отображены в специальном поле. Также можно разгруппировать элементы таблицы. Вывод сделаем на текущей странице, а значит в настройках параметра вывода выбираем «Выходной интервал». После этого подтверждаем действие.

    Результатом будет отображение корреляционной матрицы с данными с различными значениями. Все взаимосвязи имеют высокий уровень.

    Постройте матрицу парных коэффициентов корреляции в эксель. Построение матрицы коэффициентов парной корреляции. Порядок выполнения работы

    Коллинеарными являются факторы …

    Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если . В нашей модели только коэффициент парной линейной регрессии между факторами и больше 0,7. , значит, факторы и коллинеарны.

    4. В модели множественной регрессии определитель матрицы парных коэффициентов корреляции между факторами , и близок к нулю. Это означает, что факторы , и …

    Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами. Если факторы не коррелированы между собой, то матрица парных коэффициентов корреляции между факторами была бы единичной. Поскольку все недиагональные элементы были бы равны нулю.
    , поскольку = = и = = =0.
    Если между факторами существует полная линейная зависимость и все коэффициенты парной корреляции равны единице, то определитель такой матрицы равен нулю.


    Чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И, наоборот, чем ближе к единице определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов.

    5. Для эконометрической модели линейного уравнения множественной регрессии вида построена матрица парных коэффициентов линейной корреляции (y – зависимая переменная; х (1) , х (2) , х (3) , x (4) – независимые переменные):


    Коллинеарными (тесно связанными) независимыми (объясняющими) переменными не являются

    При построении модели множественной регрессии необходимо исключить возможность существования тесной линейной зависимости между независимыми (объясняющими) переменными, которая ведет к проблеме мультиколлинеарности. При этом осуществляют проверку коэффициентов линейной корреляции для каждой пары независимых (объясняющих) переменных. Эти значения отражены в матрице парных коэффициентов линейной корреляции. Считается, что наличие значений коэффициентов парной корреляции между объясняющими переменными, превышающих по абсолютной величине 0,7, отражает тесную связь между этими переменными (теснота связи с переменной y в данном случае не рассматривается). Такие независимые переменные называются коллинеарными. Если значение коэффициента парной корреляции между объясняющими переменными не превышает по абсолютной величине 0,7, то такие объясняющие переменные не являются коллинеарными. Рассмотрим значения парных коэффициентов межфакторной корреляции: между x (1) и x (2) значение равно 0,45; между x (1) и x (3) – равно 0,82; между x (1) и x (4) – равно 0,94; между x (2) и x (3) – равно 0,3; между x (2) и x (4) – равно 0,7; между x (3) и x (4) – равно 0,12. Таким образом, не превышают 0,7 значения , , . Следовательно, коллинеарными не являются факторы x (1) и x (2) , x (2) и x (3) , x (3) и x (4) . Из последних перечисленных пар в вариантах ответов присутствует пара x (2) и x (3) – это верный вариант ответа. Для остальных пар: x (1 и x (3) , x (1) и x (4) , x (2) и x (4) – значения парных коэффициентов межфакторной корреляции превышают 0,7, и эти факторы являются коллинеарными.

    Тема 3: Фиктивные переменные

    1. Дана таблица исходных данных для построения эконометрической регрессионной модели:

    Фиктивными переменными не являются

    уровень квалификации работника

    При построении регрессионной модели может возникнуть ситуация, когда необходимо включить в уравнение помимо количественных переменных переменные, отражающие некоторые атрибутивные признаки (пол, образование, регион и т.п.). Такого рода качественные переменные называются «фиктивными» (dummy) переменными. Для построения указанной в постановке задания модели используются фиктивные переменные: уровень образования и уровень квалификации работника. Остальные переменные не являются фиктивными, из предложенных вариантов это стаж работы и производительность труда.

    Читать еще:  Как в word редактировать текст

    2. При исследовании зависимости потребления мяса от уровня дохода и пола потребителя можно рекомендовать …

    использовать фиктивную переменную – пол потребителя

    разделить совокупность на две: для потребителей женского пола и для потребителей мужского пола

    использовать фиктивную переменную – уровень дохода

    исключить из рассмотрения пол потребителя, так как данный фактор нельзя измерить количественным образом

    При построении регрессионной модели может возникнуть ситуация, когда необходимо включить в уравнение помимо количественных переменных переменные, отражающие некоторые атрибутивные признаки (пол, образование, регион и т.п.). Такого рода качественные переменные называются «фиктивными» (dummy) переменными. Они отражают неоднородность исследуемой статистической совокупности и используются для более качественного моделирования зависимостей в таких неоднородных объектах наблюдения. При моделировании отдельных зависимостей по неоднородным данным можно также воспользоваться способом разделения всей совокупности неоднородных данных на несколько отдельных совокупностей, количество которых равно количеству состояний dummy-переменной. Таким образом правильными вариантами ответов являются: «использовать фиктивную переменную – пол потребителя» и «разделить совокупность на две: для потребителей женского пола и для потребителей мужского пола».

    3. Изучается зависимость цены квартиры (у ) от ее жилой площади (х ) и типа дома. В модель включены фиктивные переменные, отражающие рассматриваемые типы домов: монолитный, панельный, кирпичный. Получено уравнение регрессии: ,
    где ,
    Частными уравнениями регрессии для кирпичного и монолитного являются …

    для типа дома кирпичный

    для типа дома монолитный

    для типа дома кирпичный

    для типа дома монолитный

    Требуется узнать частное уравнение регрессии для кирпичного и монолитного домов. Для кирпичного дома значения фиктивных переменных следующие , . Уравнение примет вид: или для типа дома кирпичный.
    Для монолитного дома значения фиктивных переменных следующие , . Уравнение примет вид
    или для типа дома монолитный.

    Матрица парных коэффициентов корреляции

    В узлах матрицы находятся парные коэффициенты корреляции, характеризующие тесноту взаимосвязи между факторными признаками. Анализируя эти коэффициенты, отметим, что чем больше их абсолютная величина, тем большее влияние оказывает соответствующий факторный признак на результативный. Анализ полученной матрицы осуществляется в два этапа:

    1. Если в первом столбце матрицы есть коэффициенты корреляции, для которых /r / 0,8

    В полученной матрице парных коэффициентов корреляции этому критерию отвечают два показателя, находящиеся на пересечении строк и . Из каждой пары этих признаков в модели необходимо оставить один, он должен оказывать большее влияние на результативный признак. В итоге из модели исключаются факторы и , т.е. коэффициент роста себестоимости реализованной продукции и коэффициент роста объёма её реализации.

    Итак, в регрессионную модель вводим факторы Х1 и Х2.

    Далее осуществляется регрессионный анализ (сервис, анализ данных, регрессия). Вновь составляет таблица исходных данных с факторами Х1 и Х2. Регрессия в целом используется для анализа воздействия на отдельную зависимую переменную значений независимых переменных (факторов) и позволяет корреляционную связь между признаками представить в виде некоторой функциональной зависимости называемой уравнением регрессии или корреляционно-регрессионной моделью.

    В результате регрессионного анализа получаем результаты расчета многомерной регрессии. Проанализируем полученные результаты.

    Все коэффициенты регрессии значимы по критерию Стьюдента. Коэффициент множественной корреляции R составил 0,925, квадрат этой величины (коэффициент детерминации) означает, что вариация результативного признака в среднем на 85,5% объясняется за счет вариации факторных признаков, включенных в модель. Коэффициент детерминированности характеризует тесноту взаимосвязи между совокупностью факторных признаков и результативным показателем. Чем ближе значение R-квадрат к 1, тем теснее взаимосвязь. В нашем случае показатель, равный 0,855, указывает на правильный подбор факторов и на наличие взаимосвязи факторов с результативным показателем.

    Рассматриваемая модель адекватна, поскольку расчетное значение F-критерия Фишера существенно превышает его табличное значение (F набл =52,401; F табл =1,53).

    В качестве общего результата проведенного корреляционно-регрессионного анализа выступает множественное уравнение регрессии, которое имеет вид:

    Полученное уравнение регрессии отвечает цели корреляционно-регрессионного анализа и является линейной моделью зависимости балансовой прибыли предприятия от двух факторов: коэффициента роста производительности труда и коэффициента имущества производственного назначения.

    На основании полученной модели можно сделать вывод о том, что при увеличении уровня производительности труда на 1% к уровню предыдущего периода величина балансовой прибыли возрастет на 0,95 п.п.; увеличение же коэффициента имущества производственного назначения на 1% приведет к росту результативного показателя на 27,9 п.п. Слелдовательно, доминирующее влияние на рост балансовой прибыли оказывает увеличение стоимости имущества производственного назначения (обновление и рост основных средств предприятия).

    По множественной регрессионной модели выполняется многофакторный прогноз результативного признака. Пусть известно, что Х1 = 3,0, а Х3 = 0,7. Подставим значения факторных признаков в модель, получим Упр = 0,95*3,0 + 27,9*0,7 – 19,4 = 2,98. Таким образом, при увеличении производительности труда и модернизации основных средств на предприятии балансовая прибыль в 1 квартале 2005 г. по отношению к предыдущему периоду (IV квартал 2004 г.) возрастет на 2,98%.

    1. Построить матрицу парных коэффициентов корреляции. Проверить наличие мультиколлинеарности. Обосновать отбор факторов в модель.

    2. Построить уравнение множественной регрессии в линейной форме с выбранными факторами.

    3. Оценить статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента.

    4. Построить уравнение регрессии со статистически значимыми факторами. Оценить качество уравнения регрессии с помощью коэффициента детерминации R 2 . Оценить точность построенной модели.

    5. Оценить прогноз объема выпуска продукции, если прогнозные значения факторов составляют 75% от их максимальных значений.

    Условия задачи (Вариант 21)

    По данным, представленным в таблице 1 (n =17), изучается зависимость объема выпуска продукции Y (млн. руб.) от следующих факторов (переменных):

    X 1 – численность промышленно-производственного персонала, чел.

    X 2 – среднегодовая стоимость основных фондов, млн. руб.

    X 3 – износ основных фондов, %

    X 4 – электровооруженность, кВт×ч.

    X 5 – техническая вооруженность одного рабочего, млн. руб.

    X 6 – выработка товарной продукции на одного работающего, руб.

    Ссылка на основную публикацию
    Adblock
    detector